精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.

(1)求出二次函数的表达式以及点D的坐标;
(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;
(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2 , Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.

【答案】
(1)

解:∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).

∴设抛物线的解析式为y=a(x+3)(x﹣9),

∵C(0,4)在抛物线上,

∴4=﹣27a,

∴a=﹣

∴设抛物线的解析式为y=﹣ (x+3)(x﹣9)=﹣ x2+ x+4,

∵CD垂直于y轴,C(0,4)

∴﹣ x2+ x+4=4,

∴x=6,

∵D(6,4),


(2)

解:如图1,

∵点F是抛物线y=﹣ x2+ x+4的顶点,

∴F(3, ),

∴FH=

∵GH∥A1O1

∴GH=1,

∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,

∴S重叠部分=SA1O1F﹣SFGH= A1O1×O1F﹣ GH×FH= ×3×4﹣ ×1× =


(3)

②当3<t≤6时,如图3,

∵C2H∥OC,

∴C2H= (6﹣t),

∴S=S四边形A2O2HG=SA2O2C2﹣SC2GH

= OA×OC﹣ C2H×(t﹣3)

= ×3×4﹣ × (6﹣t)(t﹣3)

= t2﹣3t+12

∴当0<t≤3时,S= t2,当3<t≤6时,S= t2﹣3t+12


【解析】(1)用待定系数法求抛物线解析式;(2)由GH∥A1O1 , 求出GH=1,再求出FH,S重叠部分=SA1O1F﹣SFGH计算即可;(3)分两种情况①直接用面积公式计算,②用面积差求出即可.此题是二次函数综合题,主要考查了待定系数法求函数解析式,平行线分线段成比例定理,三角形的面积计算,解本题的关键是画出图形.
【考点精析】根据题目的已知条件,利用三角形的面积和平行线分线段成比例的相关知识可以得到问题的答案,需要掌握三角形的面积=1/2×底×高;三条平行线截两条直线,所得的对应线段成比例.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是(  )
A.=
B.=
C.=
D.=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式组 的解集,在数轴上表示正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为(  )

A.115°
B.120°
C.130°
D.140°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.
求证:四边形ADCF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用两种方法证明“三角形的外角和等于360°”.如图,

∠BAE、∠CBF、∠ACD是△ABC的三个外角.
求证∠BAE+∠CBF+∠ACD=360°.
请把证法1补充完整,并用不同的方法完成证法2.
(1)证法1:∵
∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°
∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).

∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.
(2)证法2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于 MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是(  )

A.15
B.30
C.45
D.60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,直线y= x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).

(1)求抛物线F1所表示的二次函数的表达式;
(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和SBOC , 记S=S四边形MAOC﹣SBOC , 求S最大时点M的坐标及S的最大值;
(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2 , 点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=x2+bx+c的图象经过点(4,3),(3,0).
(1)求b、c的值;
(2)求出该二次函数图象的顶点坐标和对称轴;
(3)在所给坐标系中画出二次函数y=x2+bx+c的图象.

查看答案和解析>>

同步练习册答案