精英家教网 > 初中数学 > 题目详情
如图,已知菱形ABCD的边长为2,∠BAD=60°,若DE⊥AB,垂足为点E,则DE的长为   
【答案】分析:由已知的DE⊥AB,根据垂直的定义得到∠AED=90°,即三角形ADE为直角三角形,在此直角三角形中,根据锐角三角函数的定义得到sin∠BAD=,将∠BAD的度数以及AD的值代入,利用特殊角的三角函数值,化简即可求出DE.
解答:解:∵DE⊥AB,
∴∠AED=90°,
在Rt△ADE中,∠BAD=60°,AD=2,
∴sin60°=
则DE=AD•sin60°=2×=
故答案为:
点评:此题考查了菱形的性质,直角三角形的性质,以及锐角三角函数,锐角三角函数很好的建立了三角形的边角关系,要求学生找出已知与未知的联系,选择合适的三角函数来解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的
EF
上,求
BC
的长度及扇形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知菱形ABCD的周长为16cm,∠ABC=60°,对角线AC和BD相交于点O,求AC和BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,已知菱形ADEF和等腰三角形ABC,AB=AC,∠BAC=54°,点B、C分别在DE、EF.(B、C分别不与E、F重合)
(1)如图1,当AE平分∠BAC时,
①求证:BD=CF;
②当AD=AB时,求∠ABD的度数;
(2)如图2,当AE不平分∠BAC时,若△ADB是一个等腰三角形,求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知菱形ABCD边长为6
3
,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.
(1)求菱形的面积;
(2)求证:EF=MN;
(3)求r1+r2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知菱形ABCD为2cm.B、C两点在以点A为圆心的
EF
上,求
BC
的长度及扇形ABC的面积.(结果保留π)

查看答案和解析>>

同步练习册答案