精英家教网 > 初中数学 > 题目详情
25、如图,已知菱形ADEF和等腰三角形ABC,AB=AC,∠BAC=54°,点B、C分别在DE、EF.(B、C分别不与E、F重合)
(1)如图1,当AE平分∠BAC时,
①求证:BD=CF;
②当AD=AB时,求∠ABD的度数;
(2)如图2,当AE不平分∠BAC时,若△ADB是一个等腰三角形,求∠ABD的度数.
分析:(1)由AE平分∠BAC,AB=AC,AE=AE,易证△ABE≌△ACE,则BE=CE,又四边形ADEF是菱形,可得DE=EF,即可得证;
(2)过点A作AM⊥DE于点M,AN⊥EF于点N,由AE平分∠DEF得AM=AN,可证Rt△AMB≌Rt△ANC(HL),则∠MAB=∠NAC,∠MAN=∠BAC;根据等角的补角相等可得,∠D=∠MAN=∠BAC=54°,最后要分三种情况讨论求解:Ⅰ.当BD=BA时;Ⅱ.当AD=AB时;Ⅲ.因为DA不可能等于DB,所以第三种情况不存在.
解答:解:(1)①证明:∵AE平分∠BAC,
∴∠BAE=∠CAE,
又∵AB=AC,AE=AE,
∴△ABE≌△ACE(2分)
∴BE=CE,
∵四边形ADEF是菱形,
∴DE=EF
∴DB=CF(5分)
②当AD=AB时,设∠D=x°,得∠FAC=∠DAB=(180-2x)°(6分)
由AF∥DE得∴x+2(180-2x)+54=180
解得x=78∴∠ABD=78°(9分)

(2)过点A作AM⊥DE于点M,AN⊥EF于点N,由AE平分∠DEF得AM=AN,
又∵AB=AC
∴Rt△AMB≌Rt△ANC
∴∠MAB=∠NAC
∴∠MAN=∠BAC
又∵∠MAN+∠MEN=180°,∠D+∠MEN=180°
∴∠D=∠MAN=∠BAC=54°(11分)
若△ADB是一个等腰三角形,下面分三种情况讨论:
Ⅰ.当BD=BA时,得∠D=∠DAB=54°
解得∠ABD=72°(12分)
Ⅱ.当AD=AB时,得∠ABD=∠D=54°,
由∠BAC=54°得AC∥DE
∴AC与AF重合,这与AC与AF不重合矛盾
∴此种情况不存在.
Ⅲ.因为DA不可能等于DB,所以第三种情况不存在.
综上所述:当△ADB是一个等腰三角形时,∠ABD的度数等于72°(13分)
点评:本题主要考查菱形的性质,同时综合利用全等三角形的判定方法及等腰三角形的性质,注意题意中的“△ADB是一个等腰三角形”,哪两条边是腰,应该分情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、如图,已知四边形ABCD是菱形,DE⊥AB,DF⊥BC,求证:△ADE≌△CDF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•遂宁)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:
(1)△ADE≌△CDF;
(2)四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•浦东新区二模)如图,已知四边形ABCD是边长为2的菱形,点E、B、C、F都在以O为圆心的同一圆弧上,且∠ADE=∠CDF,那么
EF
的长度等于
3
3
.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.

(1)试用含t的式子表示AE、AD的长;
(2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;
(3)连接DE,当t为何值时,△DEF为直角三角形?
(4)如图②,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形 AEA′D为菱形?并判断此时点A是否在BC上?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;
(2)连接DE,当t为何值时,△DEF为直角三角形?
(3)如图②,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形 AEA′D为菱形?

查看答案和解析>>

同步练习册答案