【题目】(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F,试猜想EF、BE、CF之间有怎样的关系,并说明理由;
(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,请直接写出EF、BE、CF之间的关系 .
【答案】(1)EF=BE+CF,理由见解析;(2)EF=BE﹣CF,理由见解析
【解析】
(1)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系;
(2)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系.
(1)EF=BE+CF,
理由:∵BO平分∠ABC,CO平分∠ACB,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴EF=OE+OF=BE+CF;
(2)不成立,
理由:∵BO平分∠ABC,CO平分∠ACG,
∴∠EBO=∠OBC,∠FCO=∠OCG,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCG,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴EF=OE﹣OF=BE﹣CF.
故答案为EF=BE﹣CF.
科目:初中数学 来源: 题型:
【题目】如图,CA⊥AB,垂足为点A,AB=10,AC=5,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米秒的速度沿射线AN包括点A)运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动_____秒时,△DEB与△BCA全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D为边AB上一点,CD绕点D顺时针旋转90°至DE,CE交AB于点G.已知AD=8,BG=6,点F是AE的中点,连接DF,求线段DF的长___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm2.(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b与x轴和y轴交于A、B两点,AB=4,∠BAO=45°.
(1)如图1,求直线AB的解析式.
(2)如图1,直线y=2x﹣2交x轴于点E.且P为该直线在直线AB上方一动点,当△PAB的面积等于10时,将线段PE沿着x轴平移得到线段P1E1,连接OP1.求OP1+P1E1+的最小值.
(3)如图2,在(2)问的条件下,若直线y=2x﹣2与y轴的交点是C,连接CE1,得到△OCE1,将△OCE1绕着原点O逆时针旋转α°(0<α<180),旋转过程中直线OC与直线AB交于点M,直线CE1与直线AB交于点N,当△CMN为等腰三角形时,直接写出α的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.
(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?
(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:∠MON=30o,点A1、A2、A3 在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7 的边长为【 】
A.6 B.12 C.32 D.64
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com