精英家教网 > 初中数学 > 题目详情

【题目】已知abc为正数,若关于x的一元二次方程ax2+bx+c0有两个实数根,则关于x的方程a2x2+b2x+c20解的情况为(  )

A.有两个不相等的正根B.有一个正根,一个负根

C.有两个不相等的负根D.不一定有实数根

【答案】C

【解析】

由方程ax2+bx+c0有两个实数根可得出b24ac≥0,结合abc为正数可得出b44a2c20,进而可得出关于x的方程a2x2+b2x+c20有两个不相等的实数根,由根与系数的关系可得出该方程的两根之和为负、两根之积为正,进而可得出关于x的方程a2x2+b2x+c20有两个不相等的负根.

∵关于x的一元二次方程ax2+bx+c0有两个实数根,

∴△=b24ac≥0

又∵abc为正数,

b24ac+2acb22ac0b2+2ac0

∵方程a2x2+b2x+c20的根的判别式b44a2c2(b2+2ac)(b22ac)0

∴该方程有两个不相等的实数根.

设关于x的方程a2x2+b2x+c20的两个实数根为x1x2

x1+x20x1x20

∴关于x的方程a2x2+b2x+c20有两个不相等的负根.

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(2017江西省)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的视线角”α约为20°,而当手指接触键盘时,肘部形成的手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.

(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;

(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?

(参考数据:sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有结果精确到个位)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行四边形对角线交于点边分别为边长作正方形正方形,连接

1)求证:

2)若,请求出的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(12),(53),则下列说法正确的是(  )

①抛物线与y轴有交点

②若抛物线经过点(22),则抛物线的开口向上

③抛物线的对称轴不可能是x=3

④若抛物线的对称轴是x=4,则抛物线与x轴有交点

A.①②③④B.①②③C.①③④D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 某网店销售一种产品.这种产品的成本价为10/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18/件市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示:

1)当12x18时,求yx之间的函数关系式;

2)求每天的销售利润w(元)与销售价x(元/件)之间的函数关系式并求出每件销售价为多少元时.每天的销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠BAC=60°AD平分∠BAC交边BC于点D,分别过DDEAC交边AB于点EDFAB交边AC于点F

(1)如图1,试判断四边形AEDF的形状,并说明理由;

(2)如图2,若AD=4,点HG分别在线段AEAF上,且EH=AG=3,连接EGAD于点M,连接FHEG于点N

(i)ENEG的值;

(ii)将线段DM绕点D顺时针旋转60°得到线段DM,求证:HFM三点在同一条直线上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=﹣x+mm为常数)的图象与x轴交于A(﹣30),与y轴交于点C.以直线x=﹣1为对称轴的抛物线yax2+bx+cabc为常数,且a0)经过AC两点,与x轴正半轴交于点B
1)求一次函数及抛物线的函数表达式;

2P为线段AC上的一个动点(点PCA不重合)过Px轴的垂线与这个二次函数的图象交于点D,连接CDAD,点P的横坐标为n,当n为多少时,CDA的面积最大,最大面积为多少?

3)在对称轴上是否存在一点E,使∠ACB=∠AEB?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,MBC上一点,FAM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N

1)求证:△ABM∽△EFA

2)若AB=12BM=5,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.

1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°

2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).

查看答案和解析>>

同步练习册答案