【题目】如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O、B、C、A、P在同一平面内.
求:
(1)P到OC的距离.
(2)山坡的坡度tanα.
(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan37°≈0.60)
【答案】
(1)
解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.
在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
∴BD=PDtan∠BPD=PDtan26.6°;
在Rt△CPD中,∵∠CDP=90°,∠CPD=31°,
∴CD=PDtan∠CPD=PDtan31°;
∵CD﹣BD=BC,
∴PDtan31°﹣PDtan26.6°=40,
∴0.60PD﹣0.50PD=40,
解得PD=400(米),
∴P到OC的距离为400米
(2)
解:在Rt△PBD中,BD=PDtan26.6°≈400×0.50=200(米),
∵OB=240米,
∴PE=OD=OB﹣BD=40米,
∵OE=PD=400米,
∴AE=OE﹣OA=400﹣300=100(米),
∴tanα= =0.4,
∴坡度为0.4.
【解析】(1)过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PDtan26.6°;解Rt△CPD,得出CD=PDtan31°;再根据CD﹣BD=BC,列出方程,求出PD=400即可求得点P到OC的距离;(2)利用求得的线段PD的长求出PE=40,AE=100,然后在△APE中利用三角函数的定义即可求解.
科目:初中数学 来源: 题型:
【题目】如图⊙O中,半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC,若AB=8,CD=2,则EC的长度为( )
A.2
B.8
C.2
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,小明在绣湖公园的A处正面观测解百购物中心墙面上的电子屏幕,测得屏幕上端C处的仰角为30°,接着他正对电子屏幕方向前进7m到达B处,又测得该屏幕上端C处的仰角为45°.已知电子屏幕的下端离开地面距离DE为4m,小杨的眼睛离地面1.60m,电子屏幕的上端与墙体的顶端平齐.求电子屏幕上端与下端之间的距离CD(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1, ),则点C的坐标为( )
A.(﹣ ,1)
B.(﹣1, )
C.( ,1)
D.(﹣ ,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是( )
A. =
B.AD,AE将∠BAC三等分
C.△ABE≌△ACD
D.S△ADH=S△CEG
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com