【题目】已知二次函数y=ax2+bx+c (a≠0)的图象如图所示,有下列5个结论:
①abc<0; ②b<a+c; ③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数),其中结论正确的个数有( )
A. 2个 B. 3个 C. 4个 D. 5个
【答案】B
【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①图象开口向下,与y轴交于正半轴,对称轴为x=1,能得到:a<0,c>0, =1,
∴b=﹣2a>0,
∴abc<0,此结论正确;
②当x=﹣1时,由图象知y<0,
把x=﹣1代入解析式得:a﹣b+c<0,
∴b>a+c,
∴②错误;
③图象开口向下,与y轴交于正半轴,对称轴为x=1,
能得到:a<0,c>0, =1,
所以b=﹣2a,
所以4a+2b+c=4a﹣4a+c>0.
∴③正确;
④∵由①②知b=﹣2a且b>a+c,
∴2c<3b,④正确;
⑤∵x=1时,y=a+b+c(最大值),
x=m时,y=am2+bm+c,
∵m≠1的实数,
∴a+b+c>am2+bm+c,
∴a+b>m(am+b).
∴⑤错误.
故选:B.
“点睛”此题主要考查图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a-b+c,然后根据图象判断其值.
科目:初中数学 来源: 题型:
【题目】下列各式,属于二元一次方程的个数有( )
①xy+2x-y=7; ②4x+1=x-y; ③+y=5; ④x=y; ⑤x2-y2=2
⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标。
(2)求出S△ABC
(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC变化位置,并写出A′、B′、C′的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是( )
A.(1,0)
B.(3,0)
C.(﹣3,0)
D.(0,﹣4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知函数y=﹣ x+4的图象与坐标轴的交点分别为点A、B,点C与点B关于x轴对称,动点P、Q分别在线段BC、AB上(点P不与点B、C重合).且∠APQ=∠ABO
(1)点A的坐标为 , AC的长为;
(2)判断∠BPQ与∠CAP的大小关系,并说明理由;
(3)当△APQ为等腰三角形时,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com