精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB = AC = 2B =C = 50°,点D在线段BC上运动(点D不与BC重合),连结AD,作∠ADE = 50°DE交线段AC于点E

1)若DC = 2,求证:ABDDCE

2)在点D的运动过程中,ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.

【答案】1)证明见解析;2可以,见解析.

【解析】试题分析:(1)利用公共角求得∠ADB=∠DEC, DC=AB, ∠B =∠C,所以利用AAS,证明ABDDCE.

(2)可以令ADE是等腰三角形,需要分类讨论:(1)中是一种类型,EA=ED也是一种类型,可分别求出∠BDA度数.

(2)

试题解析:

1)证明:∵ AB = AC = 2DC = 2,

AB = DC ,

B =C = 50°ADE = 50°,

BDA +CDE = 130°,

CED +CDE = 130°,

BDA =CED,

ABDDCEAAS.

2)解:可以.有以下三种可能:

①由(1)得:ABDDCE,得AD = DE.

则有∠DAE =DEA = 65°

BDA =CED = 65° + 50° = 115°

②由(1)得∠BDA =CED,

D在线段BC上运动(点D不与BC重合)

③当EA = ED时,∠EAD =ADE = 50°,

BDA =CED = 50° + 50° = 100°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果(anbmb)3=a9b15,那么(  )

A. m=4n=3 B. m=4n=4 C. m=3n=4 D. m=3n=3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式.(不写出自变量x的取值范围);

(2)如果商店销售这种商品,每天要获得150元,那么每件商品的销售价应定为多少元?

(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x2+mx+16是完全平方式,则m_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A23),B44),请在所给网格区域(含边界)上按要求画整点三角形.

1)在图1中画一个PAB,使点P的横、纵坐标之和等于点A的横坐标;

2)在图2中画一个PAB,使点PB横坐标的平方和等于它们纵坐标和的4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象经过点(-2-4),且与正比例函数的图象相交于点(4a),求:

1a的值;

2kb的值;

3)求出这两个函数的图象与y轴相交得到的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过A﹣10)、B30)两点.

1)求抛物线的解析式和顶点坐标;

2)当0x3时,求y的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是

________________ (写出所有正确说法的序号)

①方程x2-x-2=0是倍根方程.

②若(x-2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;

③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0是倍根方程;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三角形的两边分别为26,且第三边是偶数,则此三角形的第三边是________.

查看答案和解析>>

同步练习册答案