精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,点Q为坐标系上任意一点,某图形上的所有点在∠Q的内部(含角的边),这时我们把∠Q的最小角叫做该图形的视角.如图1,矩形ABCD,作射线OAOB,则称∠AOB为矩形ABCD的视角.

1如图1,矩形ABCDA1),B1),C3),D3),直接写出视角∠AOB的度数;

2)在(1)的条件下,在射线CB上有一点Q,使得矩形ABCD的视角∠AQB=60°,求点Q的坐标;

3)如图2P的半径为1,点P1 ),Qx轴上,且⊙P的视角∠EQF的度数大于60°,若Qa0),a的取值范围.

【答案】(1)视角∠AOB的度数是120°;

(2)Q的坐标(,﹣1);

3a的取值范围是0a2

【解析】试题分析:1A1),B1),OAOBy轴的夹角都为60°,所以根据视角的定义的出视角AOB的度数是120°;(2连结AC,在射线CB上截取CQ=CA,连结AQ,即可构造出等边三角形,得出视角为60°的时点Q的坐标即可;3当点Q与点O重合时,a取最小值,当FQx轴时a取最大值.

试题解析:解:(1120°

2)连结AC,在射线CB上截取CQ=CA,连结AQ

AB=2BC=2

AC=4

∴∠ACQ=60°

∴△ACQ为等边三角形,

即∠AQC=60°

CQ=AC=4

Q1).

3如图2,当点Q与点O重合时,∠EQF=60°

Q00).

如图3,当FQx轴时,∠EQF=60°

Q20).

∴a的取值范围是0<a<2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某电器超市销售A、B两种不同型号的电风扇,每种型号电风扇的购买单价分别为每台310元,460元.

(1)若某单位购买A,B两种型号的电风扇共50台,且恰好支出20000元,求A,B两种型号电风扇各购买多少台?

(2)若购买A,B两种型号的电风扇共50台,且支出不超过18000元,求A种型号电风扇至少要购买多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,先从中随机抽取15名学生家庭的年收入情况,数据如表:

(1)求这15名学生家庭年收入的平均数、中位数、众数;
(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:
(1)8(x+1)2﹣50=0
(2) (5x+3)3+32=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线与x轴,y轴分别交于A,B两点,点A关于直线的对称点为点C.

(1)求点C的坐标;

(2)若抛物线经过A,B,C三点,求该抛物线的表达式;

(3)若抛物线 经过A,B两点,且顶点在第二象限,抛物线与线段AC有两个公共点,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为反比例函数y= 的图像上一点,PA⊥x轴于点A,△PAO的面积为6,则下列各点中也在这个反比例函数图像上的是(
A.(2,3)
B.(﹣2,6)
C.( 2,6 )
D.(﹣2,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P、Q是反比例函数y= 图像上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1 , △QMN的面积记为S2 , 则S1S2 . (填“>”或“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,直线MN分别交AB、CD于点E,F,EG平分∠AEF,EG⊥FG于点G,若∠BEM=60°,则∠CFG=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )

A.(4,0)
B.(5,0)
C.(0,5)
D.(5,5)

查看答案和解析>>

同步练习册答案