【题目】如图,是等边三角形,,点是边上一点,点是线段上点,连接、.当,时,________.
【答案】2
【解析】
作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,则可根据“AAS”证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形的性质得到HE=AH,利用勾股定理得到AE=AH,则CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2.
解:作AE⊥BH,交BH的延长线于E,作BF⊥AH交AH的延长线于F,如图,
∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°,
∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,
∴∠ABH=∠CAH,
在△ABE和△CAH中
,
∴△ABE≌△CAH,
∴BE=AH,AE=CH,
在Rt△AHE中,∠AHE=∠BHD=60°,
∴∠BAH=30°,
∴HE=AH,
∴AE=AH,
∴CH=AH,
在Rt△AHC中,AH2+(AH)2=AC2=72,
解得AH=2,
故答案为2.
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中直线:分别与x轴,y轴交于点A和点B,过点A的直线与y轴交于点C,.
(1)求直线的解析式;
(2)若D为线段上一点,E为线段上一点,当时,求的最小值,并求出此时点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.
收集数据:
(1)调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);
A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本
B.抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本
C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本
整理、描述数据:
抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:
77 83 80 64 86 90 75 92 83 81
85 86 88 62 65 86 97 96 82 73
86 84 89 86 92 73 57 77 87 82
91 81 86 71 53 72 90 76 68 78
整理数据,如下表所示:
2018年九年级部分学生学生的体质健康测试成绩统计表
1 | 1 | 2 | 2 | 4 | 5 | 5 | 2 |
分析数据、得出结论
调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,
(2)你能从中得到的结论是_____________,你的理由是________________________________.
(3)体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;
(2)求DF的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON.
(1)求该二次函数的关系式;
(2)若点A的坐标是(6,-3),求△ANO的面积;
(3)当点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:
①证明:∠ANM=∠ONM;
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)
(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出点A1的坐标;
(2)画出△ABC绕点O逆时针旋转180°后的△A2B2C2,并写出点A2的坐标;
(3)直接回答:∠AOB与∠A2OB2有什么关系?
【答案】(1)作图见解析,(-4,-2);(2)作图见解析,(2,-3);(3)相等.
【解析】
试题分析:(1)根据旋转的性质作图,写出点的坐标;
根据旋转的性质作图,写出点的坐标;
(3)根据旋转的性质得出结论.
试题解析:(1)作图如下,点A1的坐标(-4,-2).
(2)作图如下,点A2的坐标(2,-3).
(3)相等.
考点:1.旋转作图;2.旋转的性质.
【题型】解答题
【结束】
20
【题目】已知函数y=(m﹣2)xm2+m-4 +2x﹣1是一个二次函数,求该二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列四个函数:
①y=kx(k为常数,k>0)
②y=kx+b(k,b为常数,k>0)
③y=(k为常数,k>0,x>0)
④y=ax2(a为常数,a>0)
其中,函数y的值随着x值得增大而减少的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值,其中的值从不等式组的整数解中选取.
【答案】(a-2)2.
【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后在不等式组的解集中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.
试题解析:
解:原式=
=
=
=(a-2)2,
由不等式组得,0≤a<5.5,
∴当a=1时,原式=(1-2)2=1.
点睛:本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法,会求一元一次不等式组的解集.
【题型】解答题
【结束】
22
【题目】某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1)m= ,n= ;
(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度;
(3)请根据以上信息补全条形统计图;
(4)根据抽样调查的结果,请你估计该校1000名学生中有多少学生最喜欢科普类图书.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com