·ÖÎö £¨1£©Éèa2+2a=x£¬½«Ôʽ±äÐκóÕûÌå´úÈë¼´¿É£»
£¨2£©½«·½³Ì×é¢Ú±äÐÎΪÀàËÆ¢ÙµÄÐÎʽ£¬²¢Éè$\frac{1}{4}$x=m£¬$\frac{1}{2}$y=n£¬Óɢٵãº$\left\{\begin{array}{l}{m=1}\\{n=3}\end{array}\right.$ ¼´$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$£¬
£¨3£©Éèx+2=a£¬y+1=b£¬½«Ô·½³Ì×éÕûÌå´úÈëºó½â·½³Ì×é¼´¿É£»
£¨4£©½«·Öʽ·½³Ì×ó±ß±äÐÎΪ»¥Îªµ¹ÊýµÄÐÎʽ£¬µÃ³ö½áÂÛ£¬Çó³öxµÄÖµ£»
£¨5£©Èçͼ£¨1£©£¬°´Á½ÌõÖ±Ïß±»µÚÈýÌõÖ±ÏßËù½Ø£¬µÃ³öͬÅÔÄڽǵĶÔÊý£¬·¢ÏÖ¿ÉÒÔÐγÉ6¶ÔͬÅÔÄڽǣ»Èçͼ£¨2£©£¬¸ù¾Ý£¨1£©ÖеĽáÂ۵óö£»
¡¾ÎÊÌâÇ¨ÒÆ¡¿Ð´³öÒ»¸öʽ×Ó£¬²¢·Ö½âÒòʽ£¬°Ña+b¿´³ÉÒ»¸öÕûÌ壬ȥÀ¨ºÅ£¬ÀûÓÃÍêȫƽ·½¹«Ê½Òòʽ·Ö½â£®
½â´ð ½â£º£¨1£©Éèa2+2a=x£¬
Ôò5-4a-2a2µÄ=5-2£¨a2+2a£©=5-2x=5-2¡Á5=-5£»
¹Ê´ð°¸Îª£º-5£»
£¨2£©$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$¢Ù£¬$\left\{\begin{array}{l}{{a}_{1}x+2{b}_{1}y=4{c}_{1}}\\{{a}_{2}x+2{b}_{2}y=4{c}_{2}}\end{array}\right.$¢Ú£¬
½«¢Ú±äÐεãº$\left\{\begin{array}{l}{{a}_{1}•\frac{1}{4}x+{b}_{1}•\frac{1}{2}y={c}_{1}}\\{{a}_{2}•\frac{1}{4}x+{b}_{2}•\frac{1}{2}y={c}_{2}}\end{array}\right.$¢Û£¬
Éè$\frac{1}{4}$x=m£¬$\frac{1}{2}$y=n£¬
Ôò·½³Ì×é¢Û¿É»¯Îª£º$\left\{\begin{array}{l}{{a}_{1}m+{b}_{1}n={c}_{1}}\\{{a}_{2}m+{b}_{2}n={c}_{2}}\end{array}\right.$¢Ü£¬
±È½Ï·½³Ì×é¢ÙºÍ¢ÜµÃ$\left\{\begin{array}{l}{m=1}\\{n=3}\end{array}\right.$ ¼´$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$£¬
¡à·½³Ì×é¢ÚµÄ½âΪ£º$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$£»
¹Ê´ð°¸Îª£»$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$£»
£¨3£©Éèx+2=a£¬y+1=b£¬
ÔòÔ·½³Ì×é±äÐÎΪ£º$\left\{\begin{array}{l}{2013a+2014b=1¢Ù}\\{2014a+2013b=-1¢Ú}\end{array}\right.$£¬
¢Ù+¢ÚµÃ£ºa+b=0¢Û£¬
¢Ú-¢ÙµÃ£ºa-b=-2¢Ü£¬
Óɢۺ͢Ü×é³ÉÐµķ½³Ì×éΪ$\left\{\begin{array}{l}{a+b=0}\\{a-b=-2}\end{array}\right.$ ½âµÃ$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{x=-3}\\{y=0}\end{array}\right.$£¬
¹Ê´ð°¸Îª£º$\left\{\begin{array}{l}{x=-3}\\{y=0}\end{array}\right.$£»
£¨4£©x+$\frac{1}{x-1}$=a+$\frac{1}{a-1}$£¬![]()
x-1+$\frac{1}{x-1}$=a-1+$\frac{1}{a-1}$£¬
¡àx-1=a-1£¬x-1=$\frac{1}{a-1}$£¬
¡àx1=a£¬x2=$\frac{a}{a-1}$£¬
¾¼ìÑ飺x1=a£¬x2=$\frac{a}{a-1}$ÊÇÔ·½³ÌµÄ½â£»
¹Ê´ð°¸Îª£ºx1=a£¬x2=$\frac{a}{a-1}$£»
£¨5£©Èçͼ£¨1£©£¬Ö±ÏßaÓëÖ±Ïßc±»Ö±ÏßbËù½ØÊ±£¬Ëù¹¹³ÉµÄͬÅÔÄÚ½ÇÓУº¡Ï1Óë¡ÏABC£¬¡Ï2Óë¡ÏCBD£¬
ͬÀí£¬Ã¿Ò»ÌõÖ±Ïß×ö½ØÏßʱ£¬¶¼ÓÐÁ½¶ÔͬÅÔÄڽǣ¬ËùÒÔÒ»¹²ÓÐ6¶ÔͬÅÔÄڽǣ»
Èçͼ2£¬²»½»ÓÚͬһµãµÄËÄÌõÖ±ÏßÁ½Á½Ïཻ£¬ÉèÕâËÄÌõÖ±Ïß·Ö±ðΪa¡¢b¡¢c¡¢d£¬¿ÉÒÔ·ÖΪ¢Ùa¡¢b¡¢c£¬¢Úa¡¢b¡¢d£¬¢Ûa¡¢c¡¢d£¬¢Üb¡¢c¡¢d£¬Ã¿ÈýÌõÖ±Ïß¶¼¹¹³ÉÁË6¶ÔͬÅÔÄڽǣ¬ËùÒÔÕâËÄ×éÏßÖÐÒ»¹²ÓÐ24¶ÔͬÅÔÄڽǣ»
¹Ê´ð°¸Îª£º6£¬24£»
¡¾ÎÊÌâÇ¨ÒÆ¡¿
Òòʽ·Ö½â£º£¨a+b£©£¨a+b-4£©+4£¬
½â£ºÔʽ=£¨a+b£©2-4£¨a+b£©+4£¬
=£¨a+b-2£©2£®
µãÆÀ ±¾ÌâÊǸù¾ÝÔĶÁ²ÄÁϽâ¾öʵ¼ÊÎÊÌ⣬ÔËÓõÄ֪ʶ±È½Ï¶à£¬µ«ÄѶȲ»´ó£»½éÉÜÁËÌØÊâÖµ·¨ºÍÕûÌå´úÈëµÄ˼Ï룬ÕâÔÚÊýѧ½â´ðÖо³£ÔËÓã¬ÓÈÆäÊÇÕûÌå´úÈëµÄ˼Ï룬¿ÉÒÔÓ¦ÓÃÓڽⷽ³Ì»ò·½³Ì×飬Ҳ¿ÉÒÔÀûÓÃÕûÌå´úÈëÇóÖµ»òÒòʽ·Ö½â£¬Í¬Ê±ÔÚ¼¸ºÎͼÐÎÖÐÒ²ÓÐÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ³É¼¨£¨·Ö£© | 50 | 60 | 70 | 80 | 90 |
| ÈËÊý£¨ÈË£© | 1 | 4 | x | y | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com