精英家教网 > 初中数学 > 题目详情
在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为______(计算结果不取近似值).
当点M与A重合时,AT取最大值是6,
当点N与C重合时,由勾股定理得此时AT取最小值为8-
82-62
=8-2
7

所以线段AT长度的最大值与最小值之和为:6+8-2
7
=14-2
7

故答案为:14-2
7

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一张宽为6cm的矩形纸片,按图示加以折叠,使得一角顶点落在AB边上,则折痕DF=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在下列说法中,正确的是(  )
A.如果两个三角形全等,则它们一定能关于某直线成轴对称
B.如果两个三角形关于某直线成轴对称,那么它们是全等三角形
C.等腰三角形是以底边高线为对称轴的轴对称图形
D.若两个图形关于某直线对称,则它们的对应点一定位于对称轴的两侧

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在矩形ABCD中,AB=6,AD=2
3
,点P是边BC上的动点(点P不与点B,C重合),过点P作直线PQBD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点.设CP=x,△PQR与矩形ABCD重叠部分的面积为y.
(1)求∠CPQ的度数.
(2)当x取何值时,点R落在矩形ABCD的边AB上?
(3)当点R在矩形ABCD外部时,求y与x的函数关系式.并求此时函数值y的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

操作与探究:
在八年级探究“直角三角形斜边上的中线等于斜边的一半”这个结论时,我们是将一块直角三角形纸片按照图①方法折叠(点A与点C重合,DE为折痕).再将图①中的△CBE沿对称轴EF折叠(如图②),通过折叠,可以发现CE=AE=BE=
1
2
AB.
(1)在上述的折叠过程中,我们还可以发现原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;
(2)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足什么条件时,一定能折成组合矩形?
满足的条件是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:三角形纸片ABC中,∠C=90°,AB=12,BC=6,B′是边AC上一点.将三角形纸片折叠,使点B与点B′重合,折痕与BC、AB分别相交于E、F.
(1)设BE=x,B′C=y,试建立y关于x的函数关系式,并直接写出x的取值范围;
(2)当△AFB′是直角三角形时,求出x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们知道三角形的一条中线能将这个三角形分成面积相等的两个三角形,反之,若经过三角形的一个顶点引一条直线将这个三角形分成面积相等两个三角形,那么这条直线平分三角形的这个顶点的对边.如图1,若S△ABD=S△ADC,则BD=CD成立.
请你直接应用上述结论解决以下问题:

(1)已知:如图2,AD是△ABC的中线,沿AD翻折△ADC,使点C落在点E,DE交AB于F,若△ADE与△ADB重叠部分面积等于△ABC面积的
1
4
,问线段AE与线段BD有什么关系?在图中按要求画出图形,并说明理由.
(2)已知:如图3,在△ABC中,∠ACB=90°,AC=2,AB=4,点D是AB边的中点,点P是BC边上的任意一点,连接PD,沿PD翻折△ADP,使点A落在E,若△PDE与△PDB重叠部分的面积等于△ABP面积的
1
4
,直接写出BP2的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l旁有两点A,B,在直线上找一点C使到A,B两点的距离之和最小.在直线上找一点D使到A,B两点的距离相等.

查看答案和解析>>

同步练习册答案