精英家教网 > 初中数学 > 题目详情
我们知道三角形的一条中线能将这个三角形分成面积相等的两个三角形,反之,若经过三角形的一个顶点引一条直线将这个三角形分成面积相等两个三角形,那么这条直线平分三角形的这个顶点的对边.如图1,若S△ABD=S△ADC,则BD=CD成立.
请你直接应用上述结论解决以下问题:

(1)已知:如图2,AD是△ABC的中线,沿AD翻折△ADC,使点C落在点E,DE交AB于F,若△ADE与△ADB重叠部分面积等于△ABC面积的
1
4
,问线段AE与线段BD有什么关系?在图中按要求画出图形,并说明理由.
(2)已知:如图3,在△ABC中,∠ACB=90°,AC=2,AB=4,点D是AB边的中点,点P是BC边上的任意一点,连接PD,沿PD翻折△ADP,使点A落在E,若△PDE与△PDB重叠部分的面积等于△ABP面积的
1
4
,直接写出BP2的值.
(1)如图2,线段AE与BD平行且相等.理由如下:
∵AD是△ABC的中线,
∴S△ABD=S△ADC=
1
2
S△ABC
∵S△ADF=
1
4
S△ABC
∴S△ADF=S△BDF=
1
2
S△ABD
∴AF=BF.
同理,DF=EF.
在△AFE与△BFD中,
BF=DF
∠EFA=∠DFB
AF=BF

∴△AFE≌△BFD(SAS),
∴AE=BD,∠EAF=∠DBF,
∴AEBD.
∴线段AE与BD平行且相等;

(2)BP2=4或12.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,已知:Rt△ABC中,∠ACB=90°.
(1)尺规作图:作∠BAC的平分线AM交BC于点D(只保留作图痕迹,不写作法);
(2)在(1)所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.①试判断四边形AEDF的形状,并证明;②若AC=8,CD=4,求四边形AEDF的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为______(计算结果不取近似值).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CPAB,RCAD,如图(2)所示,则∠C=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,把△ABC沿EF翻折,叠合后的图形如图.若∠A=60°,∠1=95°,则∠2的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)观察发现:
如(a)图,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线l的对称点B',连接AB',与直线l的交点就是所求的点P.再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为______.
(2)实践运用:
如(c)图,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是
AD
的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.
(3)拓展延伸:
如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将两个边长为2的正方形剪拼成如图所示的大正方形,记大正方形的边长为x,下面对x的大小的估计正确的是(  )
A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD沿AE折叠,使D点落在BC边上点F处,如果∠BAF=60°,则∠DAE=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

写出一个你所学过的既是轴对称又是中心对称图形的图形:______.

查看答案和解析>>

同步练习册答案