精英家教网 > 初中数学 > 题目详情
如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CPAB,RCAD,如图(2)所示,则∠C=______度.
因为折叠前后两个图形全等,故∠CPR=
1
2
∠B=
1
2
×120°=60°,
∠CRP=
1
2
∠D=
1
2
×50°=25°;
∴∠C=180°-25°-60°=95°;∠C=95度;
故应填95.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

在下列说法中,正确的是(  )
A.如果两个三角形全等,则它们一定能关于某直线成轴对称
B.如果两个三角形关于某直线成轴对称,那么它们是全等三角形
C.等腰三角形是以底边高线为对称轴的轴对称图形
D.若两个图形关于某直线对称,则它们的对应点一定位于对称轴的两侧

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

操作与探究:
在八年级探究“直角三角形斜边上的中线等于斜边的一半”这个结论时,我们是将一块直角三角形纸片按照图①方法折叠(点A与点C重合,DE为折痕).再将图①中的△CBE沿对称轴EF折叠(如图②),通过折叠,可以发现CE=AE=BE=
1
2
AB.
(1)在上述的折叠过程中,我们还可以发现原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;
(2)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足什么条件时,一定能折成组合矩形?
满足的条件是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:三角形纸片ABC中,∠C=90°,AB=12,BC=6,B′是边AC上一点.将三角形纸片折叠,使点B与点B′重合,折痕与BC、AB分别相交于E、F.
(1)设BE=x,B′C=y,试建立y关于x的函数关系式,并直接写出x的取值范围;
(2)当△AFB′是直角三角形时,求出x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长是3,则PM+PB的最小值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们知道三角形的一条中线能将这个三角形分成面积相等的两个三角形,反之,若经过三角形的一个顶点引一条直线将这个三角形分成面积相等两个三角形,那么这条直线平分三角形的这个顶点的对边.如图1,若S△ABD=S△ADC,则BD=CD成立.
请你直接应用上述结论解决以下问题:

(1)已知:如图2,AD是△ABC的中线,沿AD翻折△ADC,使点C落在点E,DE交AB于F,若△ADE与△ADB重叠部分面积等于△ABC面积的
1
4
,问线段AE与线段BD有什么关系?在图中按要求画出图形,并说明理由.
(2)已知:如图3,在△ABC中,∠ACB=90°,AC=2,AB=4,点D是AB边的中点,点P是BC边上的任意一点,连接PD,沿PD翻折△ADP,使点A落在E,若△PDE与△PDB重叠部分的面积等于△ABP面积的
1
4
,直接写出BP2的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).在图中作出△ABC关于x轴对称的△A1B1C1

查看答案和解析>>

同步练习册答案