精英家教网 > 初中数学 > 题目详情

【题目】如图O是边长为9的等边三角形ABC内的任意一点,且ODBC,交AB于点D,OFAB,交AC于点F,OEAC,交BC于点E,则OD+OE+OF的值为(  )

A. 3 B. 6 C. 8 D. 9

【答案】D

【解析】

根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.

延长OD交AC于点G,

∵OE∥CG,OG∥CE,

∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,

∵OF∥AB,

∴∠OFG=∠A=60°,

∴OF=OG,

∴△OGF是等边三角形,

∴OF=FG,

∵OD∥BC,

∴∠ADO=∠B=60°,
∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:| ﹣1|﹣ +

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是边BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③四边形AEPF的面积=△ABC的面积的一半,④当EF最短时,EF=AP,上述结论始终正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.

(1)求证:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABO中,AB⊥OB,OB= ,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1坐标为(

A.(﹣1,﹣
B.(﹣1,﹣ )或(﹣2,0)
C.(﹣ ,1)或(0,﹣2)
D.(﹣ ,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.著名数学家华罗庚提出把数形关系(勾股定理)带到其他星球,作为地球人与其他星球进行第一次谈话的语言.

请根据图1中直角三角形叙述勾股定理.

以图1中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图2).请你利用图2,验证勾股定理;

利用图2中的直角梯形,我们可以证明.其证明步骤如下:

BC=a+b,AD=_____

又∵在直角梯形ABCD中有BC_____AD(填大小关系),即_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.

(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;
(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF= AB.
(3)如图3,若∠EDF的两边分别交AB,AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE,AB,CF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQABPQ两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到离A的距离等于___________时,ΔABC和ΔPQA全等.

查看答案和解析>>

同步练习册答案