精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABO中,AB⊥OB,OB= ,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1坐标为(

A.(﹣1,﹣
B.(﹣1,﹣ )或(﹣2,0)
C.(﹣ ,1)或(0,﹣2)
D.(﹣ ,1)

【答案】B
【解析】解:∵△ABO中,AB⊥OB,OB= ,AB=1,
∴tan∠AOB= =
∴∠AOB=30°.
如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,

则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,
则易求A1(﹣1,﹣ );
如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,

则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,
则易求A1(﹣2,0);
综上所述,点A1的坐标为(﹣1,﹣ )或(﹣2,0).
故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.
(1)求这条抛物线的表达式;
(2)联结AB、BC、CD、DA,求四边形ABCD的面积;
(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算,正确的是( )
A.(﹣2)2=4
B.
C.46÷(﹣2)6=64
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC,∠C=90°,∠B=30°,以点A为圆心任意长为半径画弧分别交AB,AC于点MN,再分别以点M,N为圆心大于MN的长为半径画弧两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD∠BAC的平分线;②∠ADC=60°;③DAB的垂直平分线上;④SDAC:SABC=1:3.其中正确的是__________________.(填所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图O是边长为9的等边三角形ABC内的任意一点,且ODBC,交AB于点D,OFAB,交AC于点F,OEAC,交BC于点E,则OD+OE+OF的值为(  )

A. 3 B. 6 C. 8 D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,ABC的边BCx轴上,AC两点的坐标分别为A(0,m),Cn,0),B(﹣5,0),且(n﹣3)2+ =0.一动点P从点B出发,以每秒2单位长度的速度沿射线BO匀速运动,设点P运动的时间为ts.

(1)求AC两点的坐标;

(2)连接PA,若PAB为等腰三角形,求点P的坐标;

(3)当点P在线段BO上运动时,在y轴上是否存在点Q,使POQAOC全等?若存在,请求出t的值并直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边△ABC内有一点P,且PA=3,PB=4,PC=5,则∠APB=度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读)如图1,四边形OABC中,OA=a,OC=3,BC=2,

∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线lOC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].

(理解)

若点D与点A重合,则这个操作过程为FZ[45°,3];

(尝试)

(1)若点D恰为AB的中点(如图2),求θ;

(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.

(1)指定路灯的位置(用点P表示);
(2)在图中画出表示大树高的线段;
(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.

查看答案和解析>>

同步练习册答案