精英家教网 > 初中数学 > 题目详情

【题目】(阅读)如图1,四边形OABC中,OA=a,OC=3,BC=2,

∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线lOC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].

(理解)

若点D与点A重合,则这个操作过程为FZ[45°,3];

(尝试)

(1)若点D恰为AB的中点(如图2),求θ;

(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.

【答案】(1)θ =30°;(2)0<a<5时,点E落在四边0ABC的外部.

【解析】

(1)先根据ASA定理得出△BCD≌△AFD,故可得出CD=FD,即点DRt△COF斜边CF的中点,由折叠可知,OD=OC,故OD=OC=CD,△OCD为等边三角形,∠COD=60°,根据等边三角形三线合一的性质可得出结论;(2)根据点E四边形0ABC的边AB上可知AB⊥直线l,根据由折叠可知,OD=OC=3,DE=BC=2.再由θ=45°,AB⊥直线l,得出△ADE为等腰直角三角形,故可得出OA的长,由此可得出结论.

(1)连接CD并延长,交OA延长线于点F.

△BCD△AFD中,

∴△BCD≌△AFD(ASA).

∴CD=FD,即点DRt△COF斜边CF的中点,

∴OD=CF=CD.

又由折叠可知,OD=OC,

∴OD=OC=CD,

∴△OCD为等边三角形,∠COD=60°,

∴θ=∠COD=30°;

(2)∵E四边形OABC的边AB上,

∴AB⊥直线l

由折叠可知,OD=OC=3,DE=BC=2.

∵θ=45°,AB⊥直线l,

∴△ADE为等腰直角三角形,

∴AD=DE=2,

∴OA=OD+AD=3+2=5,

∴a=5;

由图可知,当0<a<5时,点E落在四边形0ABC的外部.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知a1+a2+…+a30+a31与b1+b2+…+b30+b31均为等差级数,且皆有31项.若a2+b30=29,a30+b2=﹣9,则此两等差级数的和相加的结果为多少?(  )
A.300
B.310
C.600
D.620

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABO中,AB⊥OB,OB= ,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1坐标为(

A.(﹣1,﹣
B.(﹣1,﹣ )或(﹣2,0)
C.(﹣ ,1)或(0,﹣2)
D.(﹣ ,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,高CD和角平分线AE交于点F,EH⊥AB于点H,那么CF=EH吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.

(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;
(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF= AB.
(3)如图3,若∠EDF的两边分别交AB,AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE,AB,CF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A,B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C′,连接AA′,若∠1=22°,则∠B的度数是(

A.67°
B.62°
C.82°
D.72°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰△ABC中,AD⊥BC于点D,且AD= BC,则△ABC底角的度数为(
A.45°
B.75°
C.45°或15°或75°
D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,若长方形的长BC为8,宽AB为4,求折叠后重叠部分的面积.

查看答案和解析>>

同步练习册答案