【题目】(阅读)如图1,四边形OABC中,OA=a,OC=3,BC=2,
∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].
(理解)
若点D与点A重合,则这个操作过程为FZ[45°,3];
(尝试)
(1)若点D恰为AB的中点(如图2),求θ;
(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.
【答案】(1)θ =30°;(2)当0<a<5时,点E落在四边形0ABC的外部.
【解析】
(1)先根据ASA定理得出△BCD≌△AFD,故可得出CD=FD,即点D为Rt△COF斜边CF的中点,由折叠可知,OD=OC,故OD=OC=CD,△OCD为等边三角形,∠COD=60°,根据等边三角形三线合一的性质可得出结论;(2)根据点E四边形0ABC的边AB上可知AB⊥直线l,根据由折叠可知,OD=OC=3,DE=BC=2.再由θ=45°,AB⊥直线l,得出△ADE为等腰直角三角形,故可得出OA的长,由此可得出结论.
(1)连接CD并延长,交OA延长线于点F.
在△BCD与△AFD中,
,
∴△BCD≌△AFD(ASA).
∴CD=FD,即点D为Rt△COF斜边CF的中点,
∴OD=CF=CD.
又由折叠可知,OD=OC,
∴OD=OC=CD,
∴△OCD为等边三角形,∠COD=60°,
∴θ=∠COD=30°;
(2)∵点E四边形OABC的边AB上,
∴AB⊥直线l
由折叠可知,OD=OC=3,DE=BC=2.
∵θ=45°,AB⊥直线l,
∴△ADE为等腰直角三角形,
∴AD=DE=2,
∴OA=OD+AD=3+2=5,
∴a=5;
由图可知,当0<a<5时,点E落在四边形0ABC的外部.
科目:初中数学 来源: 题型:
【题目】已知a1+a2+…+a30+a31与b1+b2+…+b30+b31均为等差级数,且皆有31项.若a2+b30=29,a30+b2=﹣9,则此两等差级数的和相加的结果为多少?( )
A.300
B.310
C.600
D.620
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABO中,AB⊥OB,OB= ,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1坐标为( )
A.(﹣1,﹣ )
B.(﹣1,﹣ )或(﹣2,0)
C.(﹣ ,1)或(0,﹣2)
D.(﹣ ,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.
(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;
(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF= AB.
(3)如图3,若∠EDF的两边分别交AB,AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE,AB,CF之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A,B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C′,连接AA′,若∠1=22°,则∠B的度数是( )
A.67°
B.62°
C.82°
D.72°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com