精英家教网 > 初中数学 > 题目详情

【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.

(1)求证:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度数.

【答案】(1)证明见解析;(2)69°.

【解析】试题分析:(1)根据已知条件易证∠BEO=∠1,根据等式的性质可得∠AEC=∠BED,利用ASA即可证明△AEC≌△BED;(2)由△AEC≌△BED可得EC=ED,∠C=∠BDE;△EDC中,根据等腰三角形的性质和三角形的内角和定理可求得∠C的度数,根据全等三角形的性质即可求得∠BDE的度数.

试题解析:

(1)证明:∵AEBD相交于点O, ∴∠AOD=∠BOE.

△AOD△BOE中, ∠A=∠B,

∴∠BEO=∠2.

∵∠1=∠2,

∴∠1=∠BEO, ∴∠AEC=∠BED.

△AEC△BED中,

∠A=∠B,AE=BE,∠AEC=∠BED,

∴△AEC≌△BED(ASA).

(2)∵△AEC≌△BED,

∴EC=ED,∠C=∠BDE.

△EDC中, ∵EC=ED,∠1=42°,

∴∠C=∠EDC=69°,

∴∠BDE=∠C=69°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某鞋商在进行市场占有率的调查时,他最关注的是( )

A. 鞋型号的平均数 B. 鞋型号的众数

C. 鞋型号的中位数 D. 最小的鞋型号

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,RtABC的三个顶点A(2,2),B(0,5),C(0,2).

(1)将ABC以点C为旋转中心旋转180°,得到A1B1C,请画出A1B1C的图形.

(2)平移ABC,使点A的对应点A2坐标为(2,6),请画出平移后对应的A2B2C2的图形.

(3)若将A1B1C绕某一点旋转可得到A2B2C2,请直接写出旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD的度数是(  )

A.110°
B.100°
C.90°
D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.下列三个条件:①AB∥CD,②∠B=∠C.③∠E=∠F.从中任选两个作为条件,另一个作为结论,编一道数学题,并说明理由.
已知:
结论:
理由:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为 _________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.如图所示,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD,其中正确的有( )

A. 3个 B. 4个 C. 5个 D. 6个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EF∥AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.
因为EF∥AD,
所以∠2= ),
又因为∠1=∠2,
所以∠1=∠3( ),
所以AB∥ ),
所以∠BAC+ =180°( ),
因为∠BAC=80°,
所以∠AGD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)﹙3x2+2x+1﹚-﹙2x2+x-1﹚;

(2)5﹙x2-2y﹚-2﹙x2+4y﹚;

查看答案和解析>>

同步练习册答案