精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在平面直角坐标系中.

1)作出ABC关于轴对称的,并写出三个顶点的坐标;

2)直接写出ABC的面积为

3)在x轴上画点P,使PA+PC最小.

【答案】1)作图见解析.A10,-2 ),B1(-2,-4 ),C1(-4,-1);(25;(3)见解析.

【解析】

1根据关于y轴对称的点的坐标特点画出△ABC,并写出各点坐标即可;

2)利用矩形的面积减去三个顶点上三角形的面积即可;

3)作点A关于x轴的对称点A,连接AC,则ACx轴的交点即为P点.

解:(1)如图所示,△ABC就是所作的三角形,由图可知,A(0,-2),B(-2,-4),C(-4,-1);

2SABC=4×3-×1×4-×2×2-×2×3=5

3)作A点关于x轴对称的点A,连接CAx轴于点P,连接AP,则AP+CP最小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边三角形ABC中,AB3,点D在直线BC上,点E在直线AC上,且∠BAD=∠CBE,当BD1时,则AE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市AB两个蔬菜基地得知四川CD两个灾民安置点分别急需蔬菜240t260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200tB蔬菜基地有蔬菜300t,现将这些蔬菜全部调运CD两个灾区安置点.从A地运往CD两处的费用分别为每吨20元和25元,从B地运往CD两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.

1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;

C

D

总计/t

A

200

B

x

300

总计/t

240

260

500

2)设AB两个蔬菜基地的总运费为w元,求出wx之间的函数关系式,并求

总运费最小的调运方案;

3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m0),其余线路的运费不变,试讨论总运费最小的调动方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC90°,点FBC边上,过ABF三点的⊙OAC于另一点D,作直径AE,连结EF并延长交AC于点G,连结BEBD,四边形BDGE是平行四边形.

1)求证:ABBF

2)当FBC的中点,且AC3时,求⊙O的直径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).

A. 甲的数学成绩高于班级平均分,且成绩比较稳定

B. 乙的数学成绩在班级平均分附近波动,且比丙好

C. 丙的数学成绩低于班级平均分,但成绩逐次提高

D. 就甲、乙、丙三个人而言,乙的数学成绩最不稳

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).

A. 甲的数学成绩高于班级平均分,且成绩比较稳定

B. 乙的数学成绩在班级平均分附近波动,且比丙好

C. 丙的数学成绩低于班级平均分,但成绩逐次提高

D. 就甲、乙、丙三个人而言,乙的数学成绩最不稳

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了帮助遭受自然灾害的地区,某学校号召同学们自愿捐款,已知第一次捐款总额为5800元,第二次捐款总额6000元,第二次捐款人数比第一次多20人,而且两次人均捐款额正好相等.

每桶容积(升)

20

15

每桶价格(元)

5.6

4.5

1)求两次各有多少人捐款?

2)民政部门要求将捐款换成实物,统一运送到灾区.学校决定将捐款用于购买桶装水现有两种型号桶装水,上表是这两种桶装水的容积和单价.学校按民政局的救灾规划需订购总容积为40000升的桶装水,用同学们的捐款至少需订购型水多少桶.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴交于点,与轴交于点,且与双曲线的一个交点为,将直线轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点轴的平行线,与新函数交于另一点,与双曲线交于点

1)若点的横坐标为,求的面积;(用含的式子表示)

2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案