精英家教网 > 初中数学 > 题目详情

【题目】为了帮助遭受自然灾害的地区,某学校号召同学们自愿捐款,已知第一次捐款总额为5800元,第二次捐款总额6000元,第二次捐款人数比第一次多20人,而且两次人均捐款额正好相等.

每桶容积(升)

20

15

每桶价格(元)

5.6

4.5

1)求两次各有多少人捐款?

2)民政部门要求将捐款换成实物,统一运送到灾区.学校决定将捐款用于购买桶装水现有两种型号桶装水,上表是这两种桶装水的容积和单价.学校按民政局的救灾规划需订购总容积为40000升的桶装水,用同学们的捐款至少需订购型水多少桶.

【答案】1)第一次有580人捐款,第二次有600人捐款;(2)用同学们的捐款至少需订购型水500桶.

【解析】

1)设第一次有人捐款,第二次有人捐款.得,解方程可得;

2)设学校购买型水桶,型水桶,则,解不等式可得;

解:(1)设第一次有人捐款,第二次有人捐款.则

解得:

经检验:是分式方程的解,

答:第一次有580人捐款,第二次有600人捐款;

2)设学校购买型水桶,型水桶,

解得

答:用同学们的捐款至少需订购型水500桶.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角标系中,抛物线Cyx轴交于AB两点(点A在点B的左侧),与y轴交于点C,点Dy轴正半轴上一点.且满足ODOC,连接BD

1)如图1,点P为抛物线上位于x轴下方一点,连接PBPD,当SPBD最大时,连接AP,以PB为边向上作正BPQ,连接AQ,点M与点N为直线AQ上的两点,MN2且点N位于M点下方,连接DN,求DN+MN+AM的最小值

2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将BOE绕着点A逆时针旋转60°得到B′O′E′,将抛物线y沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′x轴的右交点记为点F,连接E′FB′FR为线段E’F上的一点,连接B′R,将B′E′R沿着B′R翻折后与B′E′F重合部分记为B′RT,在平面内找一个点S,使得以B′RTS为顶点的四边形为矩形,求点S的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系中.

1)作出ABC关于轴对称的,并写出三个顶点的坐标;

2)直接写出ABC的面积为

3)在x轴上画点P,使PA+PC最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知为射线上一定点,点关于射线的对称点为点为射线上一动点,连接,满足为钝角,以点为中心,将线段逆时针旋转至线段,满足点在射线的反向延长线上.

(1)依题意补全图形;

(2)当点在运动过程中,旋转角是否发生变化?若不变化,请求出的值,若变化,请说明理由;

(3)从点向射线作垂线,与射线的反向延长线交于点,探究线段的数量关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AH是⊙O的直径,点EF分别在矩形ABCD的边BCCD上,B为直径OH上一点,AE平分∠FAH交⊙O于点E,过点E的直线FGAF,垂足为F

1)求证:直线FG是⊙O的切线;

2)若AD8EB5,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如图所示,对称轴为.下列结论中,正确的是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图点AEFC在同一直线上,AEEFFC,过EF分别作DEACBFAC,连结ABCDBDBDAC于点G,若ABCD

1)求证:△ABF≌△CDE

2)若AEED2,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两只捕捞船同时从A港出海捕鱼.甲船以每小时千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进.甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.

1)甲船从C处追赶上乙船用了多少时间?

2)甲船追赶乙船的速度是每小时多少千米?

查看答案和解析>>

同步练习册答案