【题目】如图,在平面直角标系中,抛物线C:y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为y轴正半轴上一点.且满足OD=OC,连接BD,
(1)如图1,点P为抛物线上位于x轴下方一点,连接PB,PD,当S△PBD最大时,连接AP,以PB为边向上作正△BPQ,连接AQ,点M与点N为直线AQ上的两点,MN=2且点N位于M点下方,连接DN,求DN+MN+AM的最小值
(2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将△BOE绕着点A逆时针旋转60°得到△B′O′E′,将抛物线y=沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′与x轴的右交点记为点F,连接E′F,B′F,R为线段E’F上的一点,连接B′R,将△B′E′R沿着B′R翻折后与△B′E′F重合部分记为△B′RT,在平面内找一个点S,使得以B′、R、T、S为顶点的四边形为矩形,求点S的坐标.
【答案】解:(1);(2)(,3+)或(﹣,)或(﹣2,2).
【解析】
(1)由抛物线解析式求点A、B、C坐标,由OD=OC求点D坐标.设点P横坐标为t,可用待定系数法求得用t表示的直线PB解析式,即能用t表示PB与y轴交点G的坐标,进而用t表示DG的长.以DG为界把△PBD分成左右两边的△PDG与△BDG,则以DG为底计算易求得△PBD面积与t的二次函数关系式,求对称轴即得到△PBD最大时t的值,进而得到点P坐标.求得∠ABP=30°,即x轴平分∠PBQ,故点P、Q关于x轴对称,得到点Q坐标,进而得到直线AQ解析式,发现∠QAB=∠PAB=60°.作直线AP,可得直线AQ与AP夹角为60°,过点M作MH⊥AP于H,即构造出特殊Rt△MAN,得到MH=AM.把点D平移到D',使DD'∥MN且DD'=MN,构造平行四边形MNDD',故DN=D'M.所以DN+MN+AM可转化为MN+D'M+MH.易得当点D'、M、H在同一直线上时,线段和会最短,即过D'作D'K⊥AP于K,D'K的值为所求.根据平移性质求D'坐标,求直线D'K与直线AP解析式,联立方程组求得K的坐标,即求得D'K的长.
(2)抛物线平移不改变开口方向和大小,再求得点E坐标和点A坐标,可用待定系数法求平移后的解析式,进而求得点F.由旋转性质可得△ABB'与△AEE'为等边三角形,求出点E'、B'坐标,B'F⊥x轴且△B'E'F为含30°的直角三角形.把点R从E'移动到F的过程,发现∠RB'T一定小于90°,不可能成为矩形内角,故只能是∠B'RT或∠B'TR=90°.点T可以在E'F上,也可以在B'F上,画出图形,根据含30°的直角三角形三边关系计算各线段长,即能求点S坐标.
解:(1)如图1,过点D作DD'∥MN,且DD'=MN=2,连接D'M;过点D'作D'J⊥y轴于点J;
作直线AP,过点M作MH⊥AP于点H,过点D'作D'K⊥AP于点K
∵y==0
解得:x1=﹣3,x2=1
∴A(﹣3,0),B(1,0)
∵x=0时,y==﹣
∴C(0,﹣),OC=
∴OD=OC=,D(0,)
设P(t, t2+t﹣)(﹣3<t<1)
设直线PB解析式为y=kx+b,与y轴交于点G
∴ 解得:
∴直线PB:y=(t+)x﹣t﹣,G(0,﹣t﹣)
∴DG=﹣(﹣t﹣)=t+
∴S△BPD=S△BDG+S△PDG=DGxB+DG|xP|=DG(xB﹣xP)=(t+)(1﹣t)=﹣(t2+4t﹣5)
∴t=﹣=﹣2时,S△BPD最大
∴P(﹣2,﹣),直线PB解析式为y=x﹣,直线AP解析式为y=﹣x﹣3
∴tan∠ABP==
∴∠ABP=30°
∵△BPQ为等边三角形
∴∠PBQ=60°,BP=PQ=BQ
∴BA平分∠PBQ
∴PQ⊥x轴,PQ与x轴交点I为PQ中点
∴Q(﹣2,)
∴Rt△AQI中,tan∠QAI=
∴∠QAI=∠PAI=60°
∴∠MAH=180°﹣∠PAI﹣∠QAI=60°
∵MH⊥AP于点H
∴Rt△AHM=90°,sin∠MAH=
∴MH=AM
∵DD'∥MN,DD'=MN=2
∴四边形MNDD'是平行四边形
∴D'M=DN
∴DN+MN+AM=2+D'M+MH
∵D'K⊥AP于点K
∴当点D'、M、H在同一直线上时,DN+MN+AM=2+D'M+MH=2+D'K最短
∵DD'∥MN,D(0,)
∴∠D'DJ=30°
∴D'J=DD'=1,DJ=DD'=
∴D'(1,)
∵∠PAI=60°,∠ABP=30°
∴∠APB=180°﹣∠PAI﹣∠ABP=90°
∴PB∥D'K
设直线D'K解析式为y=x+d,
把点D'代入得: +d=
解得:d=
∴直线D'K:y=x+
把直线AP与直线D'K解析式联立得:
解得:
∴K(﹣,)
∴D'K=
∴DN+MN+AM的最小值为
(2)连接B'A、BB'、EA、E'A、EE',如图2
∵点C(0,﹣)关于x轴的对称点为E
∴E(0,)
∴tan∠EAB=
∴∠EAB=30°
∵抛物线C'由抛物线C平移得到,且经过点E
∴设抛物线C'解析式为:y=x2+mx+
∵抛物线C'经过点A(﹣3,0)
∴×9﹣3m+=0
解得:m=
∴抛物线C'解析式为:y=x2+x+
∵x2+x+=0,解得:x1=﹣3,x2=﹣1
∴F(﹣1,0)
∵将△BOE绕着点A逆时针旋转60°得到△B′O′E′
∴∠BAB'=∠EAE'=60°,AB'=AB=1﹣(﹣3)=4,AE'=AE=
∴△ABB'、△AEE'是等边三角形
∴∠E'AB=∠E'AE+∠EAB=90°,点B'在AB的垂直平分线上
∴E'(﹣3,2),B'(﹣1,2)
∴B'E'=2,∠FB'E'=90°,E'F=
∴∠B'FE'=30°,∠B'E'F=60°
①如图3,点T在E'F上,∠B'TR=90°
过点S作SW⊥B'E'于点W,设翻折后点E'的对应点为E'
∴∠E'B'T=30°,B'T=B'E'=
∵△B′E′R翻折得△B'E'R
∴∠B'E'R=∠B'E'R=60°,B'E'=B'E'=2
∴E'T=B'E'﹣B'T=2﹣
∴Rt△RTE'中,RT=E'T=2﹣3
∵四边形RTB'S是矩形
∴∠SB'T=90°,SB'=RT=2﹣3
∴∠SB'W=∠SB'T﹣∠E'B'T=60°
∴B'W=SB'=﹣,SW=SB'=3﹣
∴xS=xB'﹣B'W=,yS=yB'+SW=3+
∴S(,3+)
②如图4,点T在E'F上,∠B'RT=90°
过点S作SX⊥B'F于点X
∴E'R=B'E'=1,点E'翻折后落在E'F上即为点T
∴B'S=RT=E'R=1
∵∠SB'X=90°﹣∠RB'F=30°
∴XS=B'S=,B'X=B'S=
∴xS=xB'+XS=﹣,yS=yB'﹣B'X=
∴S(﹣,)
③如图5,点T在B'F上,∠B'TR=90°
∴RE'∥E'B',∠E'=∠B'E'R=60°
∴∠E'BE'=∠E'RE'=120°
∴四边形B'E'RE'是平行四边形
∵E'R=E'R
∴B'E'RE'是菱形
∴B'E'=E'R
∴△B'E'R是等边三角形
∵∠B'SR=90°,即RS⊥B'E'
∴点S为B'E'中点
∴S(﹣2,2)
综上所述,使得以B′、R、T、S为顶点的四边形为矩形的点S坐标为(,3+)或(﹣,)或(﹣2,2).
科目:初中数学 来源: 题型:
【题目】如果一个四边形的对角线把四边形分成两个三角形,一个是等边三角形,另一个是该对角线所对的角为60°的三角形,我们把这条对角线叫做这个四边形的理想对角线,这个四边形称为理想四边形.
(1)如图①,在Rt△ABC中∠C=90°,∠B=30°,AC=4,D为AB上一点,AD=2,E为BC中点,连接DE.求证:四边形ADEC为理想四边形;
(2)如图②,△ABC是等边三角形,若BD为理想对角线,四边形ABCD为理想四边形.请画图找出符合条件的C点落在怎样的图形上;
(3)在(2)的条件下,
①若△BCD为直角三角形,BC=3,求AC的长度;
②如图③,若CD=x,BC=y,AC=z,请直接写出x,y,z之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=60°,∠C=50°,则∠BAD的度数是( )
A.70°B.40°C.50°D.60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数与反比例函数的图象相交于点与点.
(1)求反比例函数的表达式及点坐标.
(2)根据图象回答,在什么范围时,一次函数的值大于反比例函数的值.
(3)求三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点是一次函数图象上两点,它们的横坐标分别为其中,过点分别作轴的平行线,交抛物线于点,
(1)若求的值;
(2)点是抛物线上的一点,求面积的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点在反比例函数的图象上,点在反比例函数的图象上,且,线段交反比例函数的图象于另一点,连结.若点为的中点,,则的值为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校划购买甲、乙两种品牌的足球供学生使用.已知用1000 元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元.
(1)求甲、乙两种品牌的足球的单价各是多少元?
(2)学枝准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610元,那么这所学校最多购买多少个乙种品牌的足球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知第一象限的点A在反比例函数y=上,过点A作AB⊥AO交x轴于点B,∠AOB=30°,将△AOB绕点O逆时针旋转120°,点B的对应点B恰好落在反比例函数y=上,则k的值为( )
A.﹣4B.﹣C.﹣2D.﹣
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com