精英家教网 > 初中数学 > 题目详情

【题目】已知△ABC内接于O,连接AO并延长交BC于点D,若∠B60°,∠C50°,则∠BAD的度数是(  )

A.70°B.40°C.50°D.60°

【答案】B

【解析】

延长AD交圆OE,连接CE,根据圆周角定理得到∠E=B=60°,∠ACE=90°,再由同弧所对的圆周角相等可得∠AEC=B=60°,再由直角三角形的性质求得∠CAE=30°,由三角形的内角和得到∠BAC=70°,最后用角的和差即可解答.

解:延长AD交圆OE,连接CE

∴∠E=B=60°,∠ACE=90°,

∴∠CAE=90°-60°=30°,

∵∠B=60°,∠C=50°,

∴∠BAC=180°-B-ACB=70°,

∴∠BAD=BAC-CAE=40°,

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】居民区内的广场舞引起媒体关注,民勤电视台为此进行过专访报到.小平想了解本小区居民对广场舞的看法,进行了一次抽样调查,把居民对广场舞的看法分为四个层次:.非常赞同;.赞同但要有时间限制;.无所谓;.不赞同.并将调查结果绘制了图①和图②两幅不完整的统计图.请你根据图中提供的信息解答下列问题:

1)求本次被抽查的居民有多少人?

2)将图①和图②补充完整.

3)求图②中层次所在扇形的圆心角度数.

4)估计该小区5000名居民中对广场舞的看法表示赞同(包括层次和层次)的大约有多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如果三角形的两个内角∠α∠β满足∠α=2∠β,那么,我们将这样的三角形称为倍角三角形.如果一个等腰三角形是倍角三角形,那么这个等腰三角形的腰长与底边长的比值为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬传统文化,某校开展了传承经典文化,阅读经典名著活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:

收集数据:

七年级:7985738075768770759475798171758086598377

八年级:9274878272819483778380817181727782807041

整理数据:

七年级

0

1

0

a

7

1

八年级

1

0

0

7

b

2

分析数据:

平均数

众数

中位数

七年级

78

75

八年级

78

80.5

应用数据:

(1)由上表填空:a= b= c= d=

(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?

(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中(如图),已知函数的图像和反比例函数的在第一象限交于A点,其中点A的横坐标是1

1)求反比例函数的解析式;

2)把直线平移后与轴相交于点B,且,求平移后直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为落实疫情期间的垃圾分类,树立全面环保意识,某校举行了“垃圾分类,绿色环保”知识竞赛活动,根据学生的成绩划分为四个等级,并绘制了不完整的两种统计图:

根据图中提供的信息,回答下列问题:

1)参加知识竞赛的学生共有______人,并把条形统计图补充完整;

2)扇形统计图中,____________等级对应的圆心角为______度;

3)小明是四名获等级的学生中的一位,学校将从获等级的学生中任选取2人,参加市举办的知识竞赛,请用列表法或画树状图,求小明被选中参加区知识竞赛的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围ABBC两边),设AB=xm.

1)若花园的面积为192m2, x的值;

2)若在P处有一棵树与墙CDAD的距离分别是15m6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角标系中,抛物线Cyx轴交于AB两点(点A在点B的左侧),与y轴交于点C,点Dy轴正半轴上一点.且满足ODOC,连接BD

1)如图1,点P为抛物线上位于x轴下方一点,连接PBPD,当SPBD最大时,连接AP,以PB为边向上作正BPQ,连接AQ,点M与点N为直线AQ上的两点,MN2且点N位于M点下方,连接DN,求DN+MN+AM的最小值

2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将BOE绕着点A逆时针旋转60°得到B′O′E′,将抛物线y沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′x轴的右交点记为点F,连接E′FB′FR为线段E’F上的一点,连接B′R,将B′E′R沿着B′R翻折后与B′E′F重合部分记为B′RT,在平面内找一个点S,使得以B′RTS为顶点的四边形为矩形,求点S的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD为正方形,∠CAB的角平分线交BC于点E,过点CCFAEAE的延长线于点GCFAB的延长线交于点F,连接BGDG、与AC相交于点H,则下列结论:①ABECBF;②GF=CG;③BGDG;④,其中正确的是______

查看答案和解析>>

同步练习册答案