精英家教网 > 初中数学 > 题目详情

【题目】如图,已知第一象限的点A在反比例函数y上,过点AABAOx轴于点B,∠AOB30°,将△AOB绕点O逆时针旋转120°,点B的对应点B恰好落在反比例函数y上,则k的值为(  )

A.4B.C.2D.

【答案】B

【解析】

过点B轴的垂线垂足为C,过点轴的垂线垂足为D,设点的坐标为根据反比例函数的解析式和含角的直角三角形得出点的坐标,再通过解特殊角度直角三角形得出的值,再根据旋转得出,然后证明,根据全等得出的值,即可得出点B的坐标,把点B的坐标代入反比例函数解析式即可求得k的值.

过点B轴的垂线垂足为C,过点轴的垂线垂足为D,如下图所示:

设点的坐标为

又∵

解得

∵点在第一象限

不符合题意舍去,

∴点的坐标为

∵△AOB绕点O逆时针旋转120°

∵点B旋转后落在第二象限

∴点B的坐标为

解得:

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角标系中,抛物线Cyx轴交于AB两点(点A在点B的左侧),与y轴交于点C,点Dy轴正半轴上一点.且满足ODOC,连接BD

1)如图1,点P为抛物线上位于x轴下方一点,连接PBPD,当SPBD最大时,连接AP,以PB为边向上作正BPQ,连接AQ,点M与点N为直线AQ上的两点,MN2且点N位于M点下方,连接DN,求DN+MN+AM的最小值

2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将BOE绕着点A逆时针旋转60°得到B′O′E′,将抛物线y沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′x轴的右交点记为点F,连接E′FB′FR为线段E’F上的一点,连接B′R,将B′E′R沿着B′R翻折后与B′E′F重合部分记为B′RT,在平面内找一个点S,使得以B′RTS为顶点的四边形为矩形,求点S的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD为正方形,∠CAB的角平分线交BC于点E,过点CCFAEAE的延长线于点GCFAB的延长线交于点F,连接BGDG、与AC相交于点H,则下列结论:①ABECBF;②GF=CG;③BGDG;④,其中正确的是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD//CO

1)求证:△ADB∽△OBC

2)若AB=2BC=,求AD的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】十八大以来,某校已举办五届校园艺术节.为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演经典诵读民乐演奏歌曲联唱民族舞蹈等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.

(1)五届艺术节共有________个班级表演这些节日,班数的中位数为________,在扇形统计图中,第四届班级数的扇形圆心角的度数为________

(2)补全折线统计图;

(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读民乐演奏歌曲联唱民族舞蹈分别用表示).利用树状图或表格求出该班选择两项的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作发现:如图,已知ABCADE均为等腰三角形,ABACADAE,将这两个三角形放置在一起,使点BDE在同一直线上,连接CE

1)如图1,若∠ABC=∠ACB=∠ADE=∠AED55°,求证:BAD≌△CAE

2)在(1)的条件下,求∠BEC的度数;

拓广探索:(3)如图2,若∠CAB=∠EAD120°BD4CFBCEBE边上的高,请直接写出EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10/千克,售价不低于15/千克,且不超过40/每千克,根据销售情况,发现该芒果在一天内的销售量(千克)与该天的售价(元/千克)之间的数量满足如下表所示的一次函数关系.

销售量(千克)

32.5

35

35.5

38

售价(元/千克)

27.5

25

24.5

22

1)某天这种芒果售价为28/千克.求当天该芒果的销售量

2)设某天销售这种芒果获利元,写出与售价之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣3a经过点A﹣10)、C03),与x轴交于另一点B,抛物线的顶点为D

1)求此二次函数解析式;

2)连接DCBCDB,求证:△BCD是直角三角形;

3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点GOC到点E,使OG=2ODOE=2OC,然后以OGOE为邻边作正方形OEFG,连接AGDE

1)求证:DE⊥AG

2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(α360°)得到正方形OE′F′G′,如图2

在旋转过程中,当∠OAG′是直角时,求α的度数;

若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

同步练习册答案