精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD//CO

1)求证:△ADB∽△OBC

2)若AB=2BC=,求AD的长.(结果保留根号)

【答案】(1)详见解析;(2)

【解析】

1)根据AB为圆O的直径,根据圆周角定理得到∠D90°,又BC为圆O的切线,根据切线性质得到∠CBO90°,进而得到这两个角相等,又ADCO,根据两直线平行,得到一对同位角相等,从而利用两角对应相等的两三角形相似即可得证;

2)根据勾股定理求得OC,由(1)得到的相似三角形,根据相似三角形的对应边成比例得出,即AD,求出AD的长.

1)证明:∵AB是⊙O的直径,

∴∠ADB=∠90°

BC是⊙O的切线,

∴∠OBC=∠90°

ADCO

∴∠A=∠COB

在△ABD和△OBC

∵∠ADB=∠OBC,∠A=∠COB

∴△ABD∽△OCB

2)由(1)知,△ABD∽△OCB

,即AD

AB2BC

OB1

OC

AD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校举办学生综合素质大赛,分单人项目双人项目两种形式,比赛题目包括下列五类:.人文艺术;.历史社会;.自然科学;.天文地理;.体育健康.

(1)若小明参加单人项目,他从中抽取一个题目,那么恰好抽中自然科学类题目的概率为_____

(2)小林和小丽参加双人项目,比赛规定:同一小组的两名同学的题目类型不能相同,且每人只能抽取一次,求他们抽到天文地理体育健康类题目的概率是多少?(用画树状图或列表的方法求解).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点的中点,以为直角边向外作等腰,连接,当取最大值时,则的度数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,AOB是等腰直角三角形,∠AOB=90°,点A2,1.

1)求点B的坐标;

2)求经过AOB三点的抛物线的函数表达式;

3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,的斜边轴上,边轴交于点平分交边于点,经过点的圆的圆心恰好在轴上,⊙里面相交于另一点

1)求证:是⊙的切线

2)若点的坐标分别为,求⊙的半径及线段的长;

3)试探究线段三者之间满足的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平行四边形的顶点的坐标分别为顶点在双曲线上,边轴于点.若四边形的面积是面积的倍,则点的坐标为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为4,点EF分别在边ABBC上,且AE=BF=1CEDF交于点O.下列结论:①∠DOC=90°, ②OC=OE③tan∠OCD =中,正确的有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点的坐标分别为是由经过一系列变化得到的.

(1)请通过作图说明经过怎样的变化可以得到

(2)内任一点,则它的对应点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形内接于延长线上一点,平分

(1)求证:

(2)如图2,若为直径,过点的圆的切线交延长线于,若,求的半径.

查看答案和解析>>

同步练习册答案