精英家教网 > 初中数学 > 题目详情

【题目】⊙O的半径为17cm,AB,CD是⊙O的两条弦,AB∥CD,AB=30cm,CD=16cm.求AB和CD之间的距离.

【答案】解:过圆心O作OE⊥AB,OF⊥CD,连接OB,OD. 在Rt△OBE中,OE= = =8cm,
在Rt△ODF中,OF= = =15cm.
①如图1,当弦AB、CD在圆心O的同侧:
EF=OF﹣OE=15﹣8=7cm;
②如图2,当弦AB、CD在圆心O的两侧:
EF=OF+OE=15+8=23cm.
综上:AB和CD之间的距离为7cm或23cm.

【解析】作OE⊥AB于E,交CD于F,如图,连结OA、OC,由AB∥CD,根据平行线的性质得OF⊥CD,再根据勾股定理得CF= CD=8,AE= AB=15,然后根据勾股定理计算出OE和OF,再求它们的差或和即可.
【考点精析】关于本题考查的垂径定理,需要了解垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,已知ACBD,EA,EB分别平分CAB和DBA,CD过E点.求证:AB=AC+BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示).回答下列问题:
(1)设这个苗圃园垂直于墙的一边的长为x米,则平行于墙的一边长为;(用含x的代数式表示)
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元;
(3)求第8个月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小颖在如图所示的四边形场地上,沿边骑自行车进行场地追逐赛(两人只要有一个人回到自己的出发点,则比赛结束).小明从A地出发,沿A→B→C→D→A的路线匀速骑行,速度为8/秒;小颖从B地出发,沿B→C→D→A→B的路线匀速骑行,速度为6/秒.已知∠ABC=90°,AB=40米,BC=80米,CD=90米.设骑行时间为t秒,假定他们同时出发且每转一个弯需要额外耗时2秒.

(1)填空:当t=_____秒时,两人第一次到B地的距离相等;

(2)试问小明能否在小颖到达D地前追上她?若能,求出此时t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为(  )

A. 小时 B. 小时 C. 小时 D. 小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=ax2+bx+c(a≠0)的图象与函数y=x﹣ 的图象如图所示,则下列结论:①ab>0;②c>﹣ ;③a+b+c<﹣ ;④方程ax2+(b﹣1)x+c+ =0有两个不相等的实数根.其中正确的有(
A.4 个
B.3 个
C.2 个
D.1 个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是 . (结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在求一个多边形的内角和时,由于疏忽,把一个内角加了两遍,而求出的结果为2004°,请问这个内角是多少度?这个多边形是几边形?

查看答案和解析>>

同步练习册答案