【题目】某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元;
(3)求第8个月公司所获利润是多少万元?
【答案】
(1)解:由图象可知其顶点坐标为(2,﹣2),
故可设其函数关系式为:S=a(t﹣2)2﹣2.
∵所求函数关系式的图象过(0,0),
于是得:
a(0﹣2)2﹣2=0,
解得a= .
∴所求函数关系式为:S= (t﹣2)2﹣2,即S= t2﹣2t.
答:累积利润S与时间t之间的函数关系式为:S= t2﹣2t
(2)解:把S=30代入S= (t﹣2)2﹣2,
得 (t﹣2)2﹣2=30.
解得t1=10,t2=﹣6(舍去).
答:截止到10月末公司累积利润可达30万元
(3)解:把t=7代入关系式,
得S= ×72﹣2×7=10.5,
把t=8代入关系式,
得S= ×82﹣2×8=16,
16﹣10.5=5.5,
答:第8个月公司所获利是5.5万元.
【解析】(1)本题是通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出S与t之间的函数关系式;(2)把S=30代入累计利润S= t2﹣2t的函数关系式里,求得月份;(3)分别t=7,t=8,代入函数解析S= t2﹣2t,再把总利润相减就可得出.
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①,②分别是根据某地近两年6月上旬日平均气温情况绘制的折线统计图,通过观察图表回答:
去年6月上旬①
今年6月上旬②
(1)该地这两年6月上旬日平均气温分别是多少?
(2)该地这两年6月上旬日平均气温的极差分别是多少?由此可以判断哪一年6月上旬气温比较稳定?
折线图能直观地反映数据的变化趋势,能比较容易地看出变动范围,求出极差,运用时还要注意观察,通过纵横坐标的交点寻找所需要的数据信息,根据信息和题目要求作出正确分析.
观察图可知去年6月上旬的日平均气温(单位:℃)分别是:24,30,29,24,23,26,27,26,30,26.由图可知今年6月上旬的日平均气温(单位 ℃)分别是:24,26,25,26,24,26,27,26,27,26.然后求这两年的平均气温及极差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某旅游景区上山的一条小路上,有一些断断续续的台阶.下图是其中的甲、乙两段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:
(1)两段台阶路有哪些相同点和不同点?
(2)哪段台阶路走起来更舒服?为什么?
(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.
图中的数字表示每一级台阶的高度(单位:cm),并且数据15,16,16,14,14,15的方差s甲2=,数据11,15,18,17,10,19的方差s乙2=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,OA=4,OC=3,点D为BC边上一点,以AD为一边在与点B的同侧作正方形ADEF,连接OE.当点D在边BC上运动时,OE的长度的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,CE垂直对角线AC于点C,AB的延长线交CE于点E.
(1)求证:CD=BE;
(2)如果∠E=60°,CE=m,请写出求菱形ABCD面积的思路.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com