【题目】在某旅游景区上山的一条小路上,有一些断断续续的台阶.下图是其中的甲、乙两段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:
(1)两段台阶路有哪些相同点和不同点?
(2)哪段台阶路走起来更舒服?为什么?
(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.
图中的数字表示每一级台阶的高度(单位:cm),并且数据15,16,16,14,14,15的方差s甲2=,数据11,15,18,17,10,19的方差s乙2=.
【答案】(1)相同点:两段台阶路每一级台阶高度的平均数相同.不同点:两段台阶路台阶高度的中位数、方差和极差不同.(2)甲段台阶路走起来更舒服一些;(3)每一级台阶高度均整修为15 cm(原数据的平均数),使得方差为0,此时游客行走最方便.
【解析】试题分析:(1)分别求出甲、乙的中位数、方差和极差进而分析得出即可;
(2)根据方差的性质得出即可;
(3)根据方差的稳定性得出即可.
试题解析:(1)∵从小到大排列出台阶的高度值:甲的,14,14,15,15,16,16,乙的,10,11,15,17,18,19,
甲的中位数、方差和极差分别为,15cm; ;16-14=2(cm),
乙的中位数、方差和极差分别为,(15+17)÷2=16(cm),,19-10=9(cm)
平均数: (15+16+16+14+14+15)=15(cm);
∴(11+15+18+17+10+19)=15(cm).
∴相同点:两段台阶路高度的平均数相同.
不同点:两段台阶路高度的中位数、方差和极差均不相同.
(2)甲路段走起来更舒服一些,因为它的台阶高度的方差小.
(3)每个台阶高度均为15cm(原平均数),使得方差为0.
科目:初中数学 来源: 题型:
【题目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,连接DH,求证:
(1)EH=FH;
(2)∠CAB=2∠CDH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)
(1)当t=1秒时,S的值是多少?
(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;
(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示).回答下列问题:
(1)设这个苗圃园垂直于墙的一边的长为x米,则平行于墙的一边长为;(用含x的代数式表示)
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交A(﹣1,0)B(3,0)两点,直线l与抛物线交于A,C两点,其中C点的横坐标为2.
(1)求抛物线的解析式;
(2)求直线AC的函数表达式;
(3)若点M是线段AC上的点(不与A,C重合),过M作MF∥y轴交抛物线于F,交x轴于点H,设点M的横坐标为m,连接FA,FC,是否存在m,使△AFC的面积最大?若存在,求m的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元;
(3)求第8个月公司所获利润是多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小颖在如图所示的四边形场地上,沿边骑自行车进行场地追逐赛(两人只要有一个人回到自己的出发点,则比赛结束).小明从A地出发,沿A→B→C→D→A的路线匀速骑行,速度为8米/秒;小颖从B地出发,沿B→C→D→A→B的路线匀速骑行,速度为6米/秒.已知∠ABC=90°,AB=40米,BC=80米,CD=90米.设骑行时间为t秒,假定他们同时出发且每转一个弯需要额外耗时2秒.
(1)填空:当t=_____秒时,两人第一次到B地的距离相等;
(2)试问小明能否在小颖到达D地前追上她?若能,求出此时t的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=ax2+bx+c(a≠0)的图象与函数y=x﹣ 的图象如图所示,则下列结论:①ab>0;②c>﹣ ;③a+b+c<﹣ ;④方程ax2+(b﹣1)x+c+ =0有两个不相等的实数根.其中正确的有( )
A.4 个
B.3 个
C.2 个
D.1 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移2 个单位长度到点O2 , 点A的位置不变,如果以O2为原点,那么点A的坐标可能是( )
A.(3,﹣1)
B.(1,﹣3)
C.(﹣2,﹣1)
D.(2 +1,2 +1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com