【题目】如图,在菱形ABCD中,CE垂直对角线AC于点C,AB的延长线交CE于点E.
(1)求证:CD=BE;
(2)如果∠E=60°,CE=m,请写出求菱形ABCD面积的思路.
【答案】
(1)证明:连接BD.
∵四边形ABCD是菱形,
∴BD⊥AC,CD∥AB,
∵CE⊥AC,
∴CE∥BD,
∴四边形BECE为平行四边形,
∴CD=BE.
(2)解:求菱形ABCD面积的思路:只要求出对角线AC、BD即可.
BD可以利用四边形CDBE是平行四边形求得,AC 在Rt△ACE中,AC= EC求得.
S= ACBD.
【解析】(1)连接BD.只要证明四边形CDBE是平行四边形即可解决问题;(2)求出菱形的对角线即可解决问题;
【考点精析】本题主要考查了菱形的性质的相关知识点,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元;
(3)求第8个月公司所获利润是多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.
(1)求证:BE=CE;
(2)求∠CBF的度数;
(3)若AB=6,求 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移2 个单位长度到点O2 , 点A的位置不变,如果以O2为原点,那么点A的坐标可能是( )
A.(3,﹣1)
B.(1,﹣3)
C.(﹣2,﹣1)
D.(2 +1,2 +1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数y= ﹣ x的图象与性质. 小东根据学习函数的经验,对函数y= ﹣ x的图象与性质进行了探究.
下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y= ﹣ x的自变量x的取值范围是;
(2)下表是y与x的几组对应值,求m的值;
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣1 | ﹣ |
| 1 | 2 | 3 | 4 | … |
y | … |
|
|
|
|
|
|
|
| ﹣ | ﹣ | m | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(﹣2, ),结合函数的图象,写出该函数的其它性质(一条即可) .
(5)根据函数图象估算方程 ﹣ x=2的根为 . (精确到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2 -(m+1)x+2(m-1)=0,
(1)求证:无论m取何值时,方程总有实数根;
(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com