精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的方程x2 -(m+1)x+2(m-1)=0

1)求证:无论m取何值时,方程总有实数根;

2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.

【答案】证明见解析 42

【解析】

(1)根据方程的系数结合根的判别式即可得出△=(m3)20,由此即可证出结论;(2)由等腰三角形的性质可知bcbc中有一个为4,①当bc时,根据根的判别式△=(m3)20,解之求出m值,将m的值代入原方程中解方程即可得出方程的解,再根据三角形的三边关系即可得出该种情况不合适②当方程的一根为4时x4代入原方程求出m值,将m的值代入原方程中解方程即可得出方程的解再根据三角形的三边关系确定△ABC的三条边,结合三角形的周长即可得出结论.

(1)证明:∵△=[﹣(m+1)]2﹣4×2(m﹣1)=m2﹣6m+9=(m﹣3)2≥0,

无论m取何值,这个方程总有实数根;

(2)若腰长为4,将x=4代入原方程,得:16﹣4(m+1)+2(m﹣1)=0,

解得:m=5,

原方程为x2﹣6x+8=0,

解得:x1=2,x2=4.

组成三角形的三边长度为2、4、4;

若底边长为4,则此方程有两个相等实数根,

∴△=0,即m=3,

此时方程为x2﹣4x+4=0,

解得:x1=x2=2,

由于2+2=4,不能构成三角形,舍去;

所以三角形另外两边长度为4和2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,CE垂直对角线AC于点C,AB的延长线交CE于点E.
(1)求证:CD=BE;
(2)如果∠E=60°,CE=m,请写出求菱形ABCD面积的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
(1)求证:CB是⊙O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一单杆高2.2m,两立柱之间的距离为1.6m,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)一身高0.7m的小孩站在离立柱0.4m处,其头部刚好触上绳子,求绳子最低点到地面的距离;
(2)为供孩子们打秋千,把绳子剪断后,中间系上一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳子正好各为2米,木板与地面平行,求这时木板到地面的距离.(供选用数据: ≈1.8, ≈1.9, ≈2.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为 m,到墙边OA的距离分别为 m, m.
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果△ABC和△DEF这两个三角形全等,点C和点E,点B和点分别是对应点,则另一组对应点是________,对应边是______________,对应角是_____________,表示这两个三角形全等的式子是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰ABC中,∠A=36°,ABC=ACB,1=2,3=4,BDCE交于点O,则图中等腰三角形有(  )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线,tanB= ,cosC= ,AC= .求:
(1)BC的长;
(2)sin∠ADC的值.

查看答案和解析>>

同步练习册答案