【题目】如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.
求证:(1)∠PAC=∠CAB;
(2)AC2=APAB.
【答案】见解析
【解析】
(1)如下图,连接OC,由已知易得OC⊥PC,结合AP⊥PC可得OC∥AP,从而可得∠PAC=∠ACO,结合∠ACO=∠CAO即可得到∠PAC=∠CAB;
(2)由已知易得∠APC=∠ACB=90°,结合(1)中所得∠PAC=∠CAB可得△PAC∽△CAB,
这样即可由相似三角形的性质证得:AC2=APAB.
(1)连结OC,如图.
∵直线PC切半圆O于点C,
∴OC⊥PC,
∵AP⊥PC,
∴OC∥AP,
∴∠PAC=∠OCA,
∵OC=OA,
∴∠CAB=∠OCA,
∴∠PAC=∠CAB;
(2)∵AB为半圆O的直径,
∴∠ACB=90°,
∵AP⊥PC,
∴∠P=∠ACB,
又∵由(1)可知∠PAC=∠CAB,
∴△PAC∽△CAB,
∴,
∴AC2=APAB.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣8ax+12a(a<0)与x轴交于A、B两点(点A在点B的左边),抛物线上另有一点C在第一象限,且使△OCA∽△OBC,
(1)求OC的长及的值;
(2)设直线BC与y轴交于P点,当点C恰好在OP的垂直平分线上时,求直线BP和抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为A(-2,4)、B(-2,0)、C(-4,1),结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC关于原点O中心对称图形△A1B1C1.
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=( )
A. 112.5°B. 105°C. 90°D. 82.5°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+2的图象与反比例函数y=的图象在第一象限的交点为P,PA⊥x轴于点A,PB⊥y轴于点B,函数y=kx+2的图象分别交x轴,y轴于点C,D,已知△OCD的面积S△OCD=1,=
(1)求点D的坐标;
(2)求k,m的值;
(3)写出当x>0时,使一次函数y=kx+2的值大于反比例函数y=的值x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题背景:已知:如图①-1,,点的位置如图所示,连结,试探究与、之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)
解:(1)与、之间的数量关系是:(或只要关系式形式正确即可)
理由:如图①-2,过点作.
∵(作图),
∴( ),
∴(已知)
(作图),
∴_______( ),
∴_______( ),
∴(等量代换)
又∵(角的和差),
∴(等量代换)
总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.
(2)类比探究:如图②,,点的位置如图所示,连结、,请同学们类比(1)的解答过程,试探究与、之间有什么数量关系,并说明理由.
(3)拓展延伸:如图③,,与的平分线相交于点,若,求的度数,请直接写出结果,不说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(新定义):A、B、C 为数轴上三点,若点 C 到 A 的距离是点 C 到 B 的距离的 3 倍,我们就称点
C 是(A,B)的幸运点.
(特例感知):
(1)如图 1,点 A 表示的数为﹣1,点 B 表示的数为 3.表示 2 的点 C 到点 A 的距离是 3, 到点 B 的距离是 1,那么点 C 是(A,B)的幸运点.
①(B,A)的幸运点表示的数是 ;A.﹣1; B.0; C.1; D.2
②试说明 A 是(C,E)的幸运点.
(2)如图 2,M、N 为数轴上两点,点 M 所表示的数为﹣2,点 N 所表示的数为 4,则(M,N)的幸点示的数为 .
(拓展应用):
(3)如图 3,A、B 为数轴上两点,点 A 所表示的数为﹣20,点 B 所表示的数为 40.现有一只电子蚂蚁 P 从点 B 出发,以 3 个单位每秒的速度向左运动,到达点 A 停止.当 t 为何值时,P、A 和 B 三个点中恰好有一个点为其余两点的幸运点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.
(1)求证:BE=CD;
(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com