【题目】如图,在四边形纸片ABCD中,AB=10,CD=2,AD=BC=5,∠A=∠B,现将纸片沿EF折叠,使点A的对应点A′落在边AB上,连接A′C,如果△A′BC恰好是以AC为腰的等腰三角形,则AE的长是___.
【答案】1或.
【解析】
如图1,过点C作CM⊥AB于点M,过点D作DN⊥AB于点N,则易证△ADN≌△BCM,进一步可求得AN=BM=4;由于△A′BC恰好是以AC为腰的等腰三角形,故可分两种情况考虑:若A'C=BC,如图1,由等腰三角形的性质可得BM=A'M=4,进一步即可求出AE的长;若A'C=A'B,如图2,由CM 是两个直角△、△的公共边,根据勾股定理可得CM2=BC2﹣BM2=A'C2﹣A'M2,再代入数据求解方程即可.
解:如图1,过点C作CM⊥AB于点M,过点D作DN⊥AB于点N,
在△ADN和△BCM中,,
∴△ADN≌△BCM(AAS)
∴AN=BM,DN=CM,且DN∥CM,
∴四边形DCMN是矩形,
∴CD=MN=2
∴AN=BM=,
∵将纸片沿EF折叠,使点A的对应点A'落在AB边上,
∴AE=A'E,
若A'C=BC,
∵CM⊥AB,
∴BM=A'M=4,
∴AA'=AB﹣A'B=10﹣8=2,
∴AE=1,
若A'C=A'B,如图2所示:
∵CM2=BC2﹣BM2=A'C2﹣A'M2,
∴25﹣16=A'B2﹣(4﹣A'B)2,
解得:A'B=,
∴AA'=AB﹣A'B=10﹣=,
∴AE=AA'=;
故答案为:1或.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线经过点和.
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿轴翻折,得到图象N.如果过点和的直线与图象M、图象N都相交,且只有两个交点,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连接AD(AD<AB),将线段AD绕点A逆时针旋转90°得到线段AE,连接DE,CE,BD.
(1)请根据题意补全图①;
(2)猜测BD和CE的数量关系并证明;
(3)作射线BD,CE交于点P,把△ADE饶点A旋转,当∠EAC=90°,AB=3,AD=2时,补全图形,直接写出PB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b-a>c:③4a+2b+c>0;④3a>-c;⑤a+b>m(am+b)(m≠1的实数).其中结论正确的有( )
A. ①②③
B. ②③⑤
C. ②③④
D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的位置如图所示(顶点是网格线的交点)
(1)请画出△ABC向右平移2单位再向下平移3个单位的格点△A1B1C1
(2)画出△ABC绕点O逆时针方向旋转90°得到的△A2B2C2并求出旋转过程中点B到B2所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数的图象与函数()的图象交于点A(2,1)、B,与y轴交于点C(0,3).
(1)求函数的表达式和点B的坐标;
(2)观察图象,比较当x>0时与的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每位同学都能感受到日出时美丽的景色.下图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A﹑B两点,他测得“图上”圆的半径为5厘米,AB=8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,求“图上”太阳升起的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣6,0)、B(2,0)、C(0,6)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足为点E,连接AE.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如果点P的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;
(3)过点P(﹣3,m)作x轴的垂线,垂足为点F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P,求出P的坐标.(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD和四边形位似,位似比=2,四边形A′B′C′D′和四边形位似,位似比=1.四边形和四边形ABCD是位似图形吗?位似比是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com