【题目】如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y= x2+bx+c经过C、B两点,与x轴的另一交点为D.
(1)点B的坐标为( , ),抛物线的表达式为;
(2)如图2,求证:BD∥AC;
(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.
【答案】
(1)6;2;y= x2+ x﹣7
(2)
证明:在抛物线表达式y= x2+ x﹣7中,令y=0,即 x2+ x﹣7=0,
解得x=2或x=7,∴D(7,0).
如答图2所示,
过点B作BE⊥x轴于点E,则DE=OD﹣OE=1,CD=OD﹣OC=5.
在Rt△BDE中,由勾股定理得:BD= = = ;
在Rt△BCE中,由勾股定理得:BC= = = .
在△BCD中,BD= ,BC= ,CD=5,
∵BD2+BC2=CD2
∴△BCD为直角三角形,∠CBD=90°,
∴∠CBD=∠ACB=90°,
∴AC∥BD
(3)
解:如答图3所示:
由(2)知AC=BC= ,又AQ=5,
则在Rt△ACQ中,由勾股定理得:CQ= = = .
过点C作CF⊥PQ于点F,
∵S△ACQ= ACCQ= AQCF,
∴CF= = =2.
在Rt△ACF中,由勾股定理得:AF= = =4.
由垂径定理可知,AP=2AF,
∴AP=8.
【解析】(1.)解:如答图1所示,过点B作BE⊥x轴于点E.
∵AC⊥BC,
∴∠ACO+∠BCE=90°,
∵∠ACO+∠OAC=90°,∠BCE+∠CBE=90°,
∴∠OAC=∠BCE,∠ACO=∠CBE.
∵在△AOC与△CEB中,
∴△AOC≌△CEB(ASA).
∴CE=OA=4,BE=OC=2,
∴OE=OC+CE=6.
∴B点坐标为(6,2).
∵点C(2,0),B(6,2)在抛物线y= x2+bx+c上,
∴ ,
解得b= ,c=﹣7.
∴抛物线的表达式为:y= x2+ x﹣7.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,△ABC的顶点坐标分别是A(x1 , y1),B(x2 , y2),C(x3 , y3),对于△ABC的横长、纵长、纵横比给出如下定义:
将|x1﹣x2|,|x2﹣x3|,|x3﹣x1|中的最大值,称为△ABC的横长,记作Dx;将|y1﹣y2|,|y2﹣y3|,|y3﹣y1|中的最大值,称为△ABC的纵长,记作Dy;将 叫做△ABC的纵横比,记作λ= .
例如:如图1,
△ABC的三个顶点的坐标分别是A(0,3),B(2,1),C(﹣1,﹣2),则Dx=|2﹣(﹣1)|=3,Dy=|3﹣(﹣2)|=5,
所以λ= = .
(1)如图2,
点A(1,0),
①点B(2,1),E(﹣1,2),
则△AOB的纵横比λ1=
△AOE的纵横比λ2=;
②点F在第四象限,若△AOF的纵横比为1,写出一个符合条件的点F的坐标;
③点M是双曲线y= 上一个动点,若△AOM的纵横比为1,求点M的坐标;
(2)如图3,
点A(1,0),⊙P以P(0, )为圆心,1为半径,点N是⊙P上一个动点,直接写出△AON的纵横比λ的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数 的图象上.若点A的坐标为(﹣2,﹣2),则k的值为( )
A.1
B.﹣3
C.4
D.1或﹣3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当前,“校园手机”现象已经受到社会广泛关注,某数学兴趣小组对“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理: 频数分布表
看法 | 频数 | 频率 |
赞成 | 5 | |
无所谓 | 0.1 | |
反对 | 40 | 0.8 |
(1)请求出共调查了多少人;并把小文整理的图表补充完整;
(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当前,“校园手机”现象已经受到社会广泛关注,某数学兴趣小组对“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理: 频数分布表
看法 | 频数 | 频率 |
赞成 | 5 | |
无所谓 | 0.1 | |
反对 | 40 | 0.8 |
(1)请求出共调查了多少人;并把小文整理的图表补充完整;
(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求OE的长及经过O,D,C三点抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )
A.
B.2 ﹣
C.2 ﹣
D.4 ﹣
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com