精英家教网 > 初中数学 > 题目详情

【题目】如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y= x2+bx+c经过C、B两点,与x轴的另一交点为D.

(1)点B的坐标为(),抛物线的表达式为
(2)如图2,求证:BD∥AC;
(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.

【答案】
(1)6;2;y= x2+ x﹣7
(2)

证明:在抛物线表达式y= x2+ x﹣7中,令y=0,即 x2+ x﹣7=0,

解得x=2或x=7,∴D(7,0).

如答图2所示,

过点B作BE⊥x轴于点E,则DE=OD﹣OE=1,CD=OD﹣OC=5.

在Rt△BDE中,由勾股定理得:BD= = =

在Rt△BCE中,由勾股定理得:BC= = =

在△BCD中,BD= ,BC= ,CD=5,

∵BD2+BC2=CD2

∴△BCD为直角三角形,∠CBD=90°,

∴∠CBD=∠ACB=90°,

∴AC∥BD


(3)

解:如答图3所示:

由(2)知AC=BC= ,又AQ=5,

则在Rt△ACQ中,由勾股定理得:CQ= = =

过点C作CF⊥PQ于点F,

∵SACQ= ACCQ= AQCF,

∴CF= = =2.

在Rt△ACF中,由勾股定理得:AF= = =4.

由垂径定理可知,AP=2AF,

∴AP=8.


【解析】(1.)解:如答图1所示,过点B作BE⊥x轴于点E.
∵AC⊥BC,
∴∠ACO+∠BCE=90°,
∵∠ACO+∠OAC=90°,∠BCE+∠CBE=90°,
∴∠OAC=∠BCE,∠ACO=∠CBE.
∵在△AOC与△CEB中,

∴△AOC≌△CEB(ASA).
∴CE=OA=4,BE=OC=2,
∴OE=OC+CE=6.
∴B点坐标为(6,2).
∵点C(2,0),B(6,2)在抛物线y= x2+bx+c上,

解得b= ,c=﹣7.
∴抛物线的表达式为:y= x2+ x﹣7.

【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,△ABC的顶点坐标分别是A(x1 , y1),B(x2 , y2),C(x3 , y3),对于△ABC的横长、纵长、纵横比给出如下定义:
将|x1﹣x2|,|x2﹣x3|,|x3﹣x1|中的最大值,称为△ABC的横长,记作Dx;将|y1﹣y2|,|y2﹣y3|,|y3﹣y1|中的最大值,称为△ABC的纵长,记作Dy;将 叫做△ABC的纵横比,记作λ=
例如:如图1,

△ABC的三个顶点的坐标分别是A(0,3),B(2,1),C(﹣1,﹣2),则Dx=|2﹣(﹣1)|=3,Dy=|3﹣(﹣2)|=5,
所以λ= =
(1)如图2,

点A(1,0),
①点B(2,1),E(﹣1,2),
则△AOB的纵横比λ1=
△AOE的纵横比λ2=
②点F在第四象限,若△AOF的纵横比为1,写出一个符合条件的点F的坐标
③点M是双曲线y= 上一个动点,若△AOM的纵横比为1,求点M的坐标
(2)如图3,

点A(1,0),⊙P以P(0, )为圆心,1为半径,点N是⊙P上一个动点,直接写出△AON的纵横比λ的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数 的图象上.若点A的坐标为(﹣2,﹣2),则k的值为(
A.1
B.﹣3
C.4
D.1或﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣ |+ ﹣4sin45°﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣ |+ ﹣4sin45°﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当前,“校园手机”现象已经受到社会广泛关注,某数学兴趣小组对“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理: 频数分布表

看法

频数

频率

赞成

5

无所谓

0.1

反对

40

0.8


(1)请求出共调查了多少人;并把小文整理的图表补充完整;
(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当前,“校园手机”现象已经受到社会广泛关注,某数学兴趣小组对“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理: 频数分布表

看法

频数

频率

赞成

5

无所谓

0.1

反对

40

0.8


(1)请求出共调查了多少人;并把小文整理的图表补充完整;
(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.

(1)求OE的长及经过O,D,C三点抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是(
A.
B.2
C.2
D.4

查看答案和解析>>

同步练习册答案