精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,已知抛物线 (b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,–1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求b,c的值;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与直线AC交于另一点Q.
①点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,求点M的坐标;
②取BC的中点N,连接NP,BQ.当取最大值时,点Q的坐标为________.

(1);(2)①(4,﹣1),(﹣2,﹣7);②.

解析试题分析:(1)先求出点B的坐标,然后利用待定系数法求即可求得b,c的值.
(2)①首先求出直线AC的解析式和线段PQ的长度,作为后续计算的基础,当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,点M到PQ的距离为.此时,将直线AC向右平移4个单位后所得直线(y=x-5)与抛物线的交点,即为所求之M点.
②由①可知,PQ=为定值,因此当NP+BQ取最小值时,有最大值.如答图2所示,作点B关于直线AC的对称点B′,由分析可知,当B′、Q、F(AB中点)三点共线时,NP+BQ最小,进而求出点Q的坐标.
试题解析:(1)由题意,得点B的坐标为(4,﹣1).
∵抛物线过A(0,﹣1),B(4,﹣1)两点,
,解得.
(2)①由(1)得抛物线的函数表达式为:.
∵A(0,﹣1),C(4,3),∴直线AC的解析式为:y=x﹣1.
设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.
∵点P在直线AC上滑动,∴可设P的坐标为(m,m﹣1).
则平移后抛物线的函数表达式为:.
解方程组:,解得.
∴P(m,m﹣1),Q(m﹣2,m﹣3).
过点P作PE∥x轴,过点Q作QE∥y轴,则
PE=m﹣(m﹣2)=2,QE=(m﹣1)﹣(m﹣3)=2,
∴PQ==AP0.
当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,点M到PQ的距离为(即为PQ的长),
由A(0,﹣1),B(4,﹣1),P0(2,1)可知,
△ABP0为等腰直角三角形,且BP0⊥AC,BP0=.
如答图1,过点B作直线l1∥AC,交抛物线于点M,则M为符合条件的点.
∴可设直线l1的解析式为:y=x+b1.
∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5.∴直线l1的解析式为:y=x﹣5.
解方程组,得:.
∴M1(4,﹣1),M2(﹣2,﹣7).

②取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.
如答图2,连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,
∴四边形PQFN为平行四边形.
∴NP=FQ.
∴NP+BQ=FQ+B′Q≥FB′.
∴当B′、Q、F三点共线时,NP+BQ最小,则取最大值,
∴点Q的坐标为.

考点:1.二次函数综合题;2.平移问题;3.二次函数的图象与性质;4.待定系数法的应用;5.曲线上点的坐标与方程的关系;6.等腰直角三角形的判定和性质;7.轴对称的应用(最短路线问题).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,直线y=﹣3x﹣3与x轴、y轴分别相交于点A、C,经过点C且对称轴为x=1的抛物线y=ax2+bx+c与x轴相交于A、B两点.
(1)试求点A、C的坐标;
(2)求抛物线的解析式;
(3)若点M在线段AB上以每秒1个单位长度的速度由点B向点A运动,同时,点N在线段OC上以相同的速度由点O向点C运动(当其中一点到达终点时,另一点也随之停止运动),又PN∥x轴,交AC于P,问在运动过程中,线段PM的长度是否存在最小值?若有,试求出最小值;若无,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.

(1)如图1,若m=
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,矩形的边轴上,且,直线经过点,交轴于点
(1)点的坐标分别是       ),       );
(2)求顶点在直线上且经过点的抛物线的解析式;
(3)将(2)中的抛物线沿直线向上平移,平移后的抛物线交轴于点,顶点为点.求出当时抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,∠BAC=90°, BC∥x轴,抛物线y=ax2-2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.

(1)求抛物线的解析式;
(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形,若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,抛物线轴交于两点,与轴交于点,连结AC,若
(1)求抛物线的解析式;
(2)抛物线对称轴上有一动点P,当时,求出点的坐标;
(3)如图2所示,连结是线段上(不与重合)的一个动点.过点作直线,交抛物线于点,连结,设点的横坐标为.当t为何值时,的面积最大?最大面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=x2+2ax-2.
(1)求证:经过点(0,)且与x轴平行的直线与该函数的图象总有两个公共点;
(2)该函数和y=-x2+(a-3)x+的图象都经过x轴上两个不同的点A、B,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在直角坐标平面内,O为原点,抛物线经过点A(6,0),且顶点B(m,6)在直线上.
(1)求m的值和抛物线的解析式;
(2)如在线段OB上有一点C,满足,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请直接写出点N的坐标.
 

查看答案和解析>>

同步练习册答案