精英家教网 > 初中数学 > 题目详情

如图,在直角坐标平面内,O为原点,抛物线经过点A(6,0),且顶点B(m,6)在直线上.
(1)求m的值和抛物线的解析式;
(2)如在线段OB上有一点C,满足,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请直接写出点N的坐标.
 

(1)3,;(2)①;②(-5,)或(4,8)或.

解析试题分析:(1)先根据抛物线的顶点B(m,6)在直线上可求出m的值,再用待定系数发即可求出此抛物线的解析式.
(2)①作CH⊥OA,BG⊥OA,再根据平行线分线段成比例定理即可得出CH的长,进而求出C点坐标,再根据D点坐标用待定系数法即可求出直线DC解析式.
②根据菱形的性质即可求出符合条件的N点坐标.
(1)∵顶点B(m,6)在直线上,∴m="3." ∴B(3,6).
把A、B两点坐标代入抛物线的解析式得,,解得.
∴抛物线的解析式为:.
(2)①如图1,作CH⊥OA,BG⊥OA,
∴CH∥BG,∴△OCH∽△OBG. ∴.
∵OC=2CB,∴,即CH="4." ∴点C的坐标为(2,4).
∵D(10,0),∴根据题意,解得:.
∴直线DC解析式.

②如图2:∵四边形ENOM是菱形,∴OS=ES=OE=. ∴NK=.
∵ON∥DE,∴tan∠NOK=tan∠EDO=.∴OK=5.∴N1(-5,).

如图3:∵EM⊥OB,∴ON=2OC.
∵点C的坐标为(2,4),∴N2(4,8).

③如图4:∵直线DC解析式,∴E(0,5).
设M(x,),
∵四边形ENOM是菱形,∴EM=OE=5,即,解得x=.∴M.
∴可设N(,y),则,解得y=或y=(舍去).∴N3.

综上所述,点N的坐标为(-5,)或(4,8)或.
考点:1.二次函数综合题;2.动点问题;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.锐角三角函数定义;6.菱形的性质;7.分类思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,已知抛物线 (b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,–1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求b,c的值;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与直线AC交于另一点Q.
①点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,求点M的坐标;
②取BC的中点N,连接NP,BQ.当取最大值时,点Q的坐标为________.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标;
(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.
①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.
②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,抛物线与x轴交于点A(-2,0)和点B,与y轴交于点C(0,),线段AC上有一动点P从点A出发,以每秒1个单位长度的速度向点C移动,线段AB上有另一个动点Q从点B出发,以每秒2个单位长度的速度向点A移动,两动点同时出发,设运动时间为t秒.
(1)求该抛物线的解析式;
(2)在整个运动过程中,是否存在某一时刻,使得以A,P,Q为顶点的三角形与△AOC相似?如果存在,请求出对应的t的值;如果不存在,请说明理由.
(3)在y轴上有两点M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,请直接写出相应的m、t的值以及AM+MN+NP的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,△ABC的边AB在x轴上,∠ABC=90°,AB=BC,OA=1,OB=4,抛物线经过A、C两点.
(1)求抛物线的解析式及其顶点坐标;
(2)如图①,点P是抛物线上位于x轴下方的一点,点Q与点P关于抛物线的对称轴对称,过点P、Q分别向x轴作垂线,垂足为点D、E,记矩形DPQE的周长为d,求d的最大值,并求出使d最大值时点P的坐标;
(3)如图②,点M是抛物线上位于直线AC下方的一点,过点M作MF⊥AC于点F,连接MC,作MN∥BC交直线AC于点N,若MN将△MFC的面积分成2:3两部分,请确定M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,△ABC的边AB在x轴上,∠ABC=90°,AB=BC,OA=1,OB=4,抛物
线经过A、C两点.
(1)求抛物线的解析式及其顶点坐标;
(2)如图①,点P是抛物线上位于x轴下方的一点,点Q与点P关于抛物线的对称轴对称,过点P、Q分别向x轴作垂线,垂足为点D、E,记矩形DPQE的周长为d,求d的最大值,并求出使d最大值时点P的坐标;
(3)如图②,点M是抛物线上位于直线AC下方的一点,过点M作MF⊥AC于点F,连接MC,作MN∥BC交直线AC于点N,若MN将△MFC的面积分成2:3两部分,请确定M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某经销商代理销售一种手机,按协议,每卖出一部手机需另交品牌代理费100元,已知该种手机每部进价800元,销售单价为1200元时,每月能卖出100部,市场调查发现,若每部手机每让利50元,则每月可多售出40部.
(1)若每月要获取36000元利润,求让利价
(利润=销售收入-进货成本-品牌代理费)
(2)设让利x元,月利润为y元,写出y与x的函数关系式,并求让利多少元时,月利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

当k分别取-1,1,2时,函数y=(k-1)x2-4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线y=x与抛物线y=x2交于A、B两点.

(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数y=x2的函数值为y2.若y1>y2,求x的取值范围.

查看答案和解析>>

同步练习册答案