精英家教网 > 初中数学 > 题目详情

如图,已知直线y=x与抛物线y=x2交于A、B两点.

(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数y=x2的函数值为y2.若y1>y2,求x的取值范围.

(1) A(0,0),B(2,2);(2) 0<x<2.

解析试题分析:(1)联立两函数解析式求解即可得到点A、B的坐标;
(2)根据函数图象写出直线在抛物线上方部分的x的取值范围即可.
试题解析: (1)∵直线y=x与抛物线y=x2交于A、B两点,
∴x=x2解得,x1=0,x2=2,
当x1=0时,y1=0,x2=2时,y2=2
∴A(0,0),B(2,2);
(2)由(1)知,A(0,0),B(2,2).
∵一次函数y=x的函数值为y1,二次函数y=x2的函数值为y2
∴当y1>y2时,根据图象可知x的取值范围是:0<x<2
考点: 1.二次函数与不等式(组);2.二次函数的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在直角坐标平面内,O为原点,抛物线经过点A(6,0),且顶点B(m,6)在直线上.
(1)求m的值和抛物线的解析式;
(2)如在线段OB上有一点C,满足,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请直接写出点N的坐标.
 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知点A(1,2)和B(-2,5),试求出两个二次函数,使它们的图象都经过A、B两点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线y=-2x+4与x轴、y轴分别相交于A、C两点,抛物线y=-2x2+bx+c (a≠0)经过点A、C.

(1)求抛物线的解析式;
(2)设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于△APC面积的4倍.求出点Q的坐标;
(3)点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F,使△MEF为等腰直角三角形? 若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价每上涨1元.则每个月少卖10件。设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1) 求y与x的函数关系式
(2) 每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3) 若每个月的利润不低于2160元,售价应在什么范围?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直角坐标系中Rt△ABO,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O逆时针旋转90°,得到Rt△A′B′O.

(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;
(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.
(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动:点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(),那么:

(1)设△POQ的面积为,求关于的函数解析式。
(2)当△POQ的面积最大时,△  POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求此抛物线的解析式;
(2)抛物线上是否存在点P,使,若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

动物园计划用长为120米的铁丝围成如图所示的兔笼,(不包括顶棚)供学习小组的同学参观,其中一面靠墙,(墙足够长)怎样设计围成的面积最大?

查看答案和解析>>

同步练习册答案