4
分析:由角的等量关系可分别得出△ABG和△DCE是等腰三角形,得出AB=AG,DC=DE,则有AG=DE,从而证得AE=DG,进而求出EG的长.
解答:明:∵四边形ABCD是平行四边形(已知),
∴AD∥BC,AB=CD(平行四边形的对边平行,对边相等)
∴∠GBC=∠BGA,∠BCE=∠CED(两直线平行,内错角相等)
又∵BG平分∠ABC,CE平分∠BCD(已知),
∴∠ABG=∠GBC,∠BCE=∠ECD(角平分线定义)

∴∠ABG=∠AGB,∠ECD=∠CED.
∴AB=AG,CD=DE(在同一个三角形中,等角对等边)
∴AG=DE,
∴AG-EG=DE-EG,
即AE=DG,
∵AB=6,AD=8,
∴AG=6,DG=AE=2,
∴EG=4,
故答案为4.
点评:本题考查平行四边形的性质、等腰三角形判定等知识.由等腰三角形的判定和等量代换推出AG=DE是关键.运用平行四边形的性质和等腰三角形的知识解答.