精英家教网 > 初中数学 > 题目详情

如图,E是等边△ABC的AB边上一点.将△ACE旋转到△BCF的位置
(1)旋转中心是______点;
(2)旋转了______度;
(3)若D是AC的中点,那么经过上述旋转变换后,点D转到了什么位置?

解:(1)∵△ABC为等边三角形,
∴CA=CB,
而△ACE旋转到△BCF的位置,
即CA旋转到CB,CE旋转到CF,
∴旋转中心为C点;

(2)∵△ABC为等边三角形,
∴∠ACB=60°,
∴CA旋转到CB,
∴旋转角度为∠ACB,即旋转了60°;
故答案为C;60;

(3)若D是AC的中点,以C点为旋转中心,逆时针旋转60°后,点D转到了CB的中点位置上.
分析:根据等边三角形的性质得CA=CB,∠ACB=60°,由于△ACE旋转到△BCF的位置,则可得到旋转中心为C点;旋转角度为∠ACB,利用AC与BC是对应边,若D是AC的中点,以C点为旋转中心,逆时针旋转60°后,点D转到了CB的中点位置上.
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,点D是线段BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交AB、AC于点F、G,连接BE.
(1)若△ABC的面积是1,则△ADE的最小面积为
3
4
3
4

(2)求证:△AEB≌ADC;
(3)探究四边形BCGE是怎样特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,P为△ABC内任意一点,PE∥AB,PF∥AC.那么,△PEF是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D是AC的中点,F为边AB上一动点,AF=nBF,E为直线BC上一点,且∠EDF=120°.
 
(1)如图1,当n=2时,求
CE
CD
=
1
3
1
3

(2)如图2,当n=
1
3
时,求证:CD=2CE;
(3)如图3,过点D作DM⊥BC于M,当
n=3
n=3
时,C点为线段EM的中点.

查看答案和解析>>

同步练习册答案