精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF,BF,DF.

(1)求证:△ABC≌△ABF;
(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.

【答案】
(1)

证明:∵EF∥AB,

∴∠E=∠CAB,∠EFA=∠FAB,

∵∠E=∠EFA,

∴∠FAB=∠CAB,

在△ABC和△ABF中,

∴△ABC≌△ABF.


(2)

解:当∠CAB=60°时,四边形ADFE为菱形.

证明:∵∠CAB=60°,

∴∠FAB=∠CAB=∠CAB=60°,

∴EF=AD=AE,

∴四边形ADFE是菱形.


【解析】(1)首先利用平行线的性质得到∠FAB=∠CAB,然后利用SAS证得两三角形全等即可;
(2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形.
【考点精析】掌握菱形的判定方法和圆周角定理是解答本题的根本,需要知道任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.

(1)求证:∠A=∠AEB
(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校举行一次体育测试,从所有参加测试的中学生中随机的抽取10名学生的成绩,制作出如下统计表和条形图,请解答下列问题:

编号

成绩

等级

编号

成绩

等级

95

A

76

B

78

B

85

A

72

C

82

B

79

B

77

B

92

A

69

C


(1)孔明同学这次测试的成绩是87分,则他的成绩等级是 等;
(2)请将条形统计图补充完整;
(3)已知该校所有参加这次测试的学生中,有60名学生成绩是A等,请根据以上抽样结果,估计该校参加这次测试的学生总人数是多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.

(1)求m的值及抛物线E2所表示的二次函数的表达式;
(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.

(1)在运动过程中,求P,Q两点间距离的最大值;
(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;
(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t值;若不存在,请说明理由(≈2.24,结果保留一位小数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:

(1)在扇形统计图中,“合格”的百分比为 ;
(2)本次体质抽测中,抽测结果为“不合格”等级的学生有
(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有 人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.

(1)求证:AB=AE;
(2)若∠A=100°,求∠EBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.
(1)求证:AB平分∠OAD;
(2)若点E是优弧 上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)

查看答案和解析>>

同步练习册答案