【题目】如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.
(1)在运动过程中,求P,Q两点间距离的最大值;
(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;
(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t值;若不存在,请说明理由(≈2.24,结果保留一位小数).
【答案】
(1)
解:如图1,过Q作QE⊥AC于E,连接PQ,
∵∠C=90°,
∴QE∥BC,
∴△ABC∽△AQE,
∵AQ=2t,AP=t,
∵∠C=90°,AC=8,BC=6,
∴AB=10,
∴PE=t,QE=t,
∴PQ2=QE2+PE2,
∴PQ=t,
当Q与B重合时,PQ的值最大,
∴当t=5时,PQ的最大值=.
(2)
如图1,△ABC被直线PQ扫过的面积=S△AQP,
当Q在AB边上时,S=APQE=tt=t2,(0<t≤5)
当Q在BC边上时,△ABC被直线PQ扫过的面积=S四边形ABQP,
∴S四边形ABQP=S△ABC﹣S△PQC=×8×6﹣(8﹣t)(16﹣2t)=﹣t2+16t﹣40,(5<t≤8);
∴经过t秒的运动,△ABC被直线PQ扫过的面积S与时间t的函数关系式:S=t2或S=﹣t2+16t﹣40.
(3)存在,如图2,连接CQ,PQ,
由(1)知QE=t,CE=AC﹣AE=8﹣,PQ=t,
∴CQ====2,
①当CQ=CP时,
即:2=8﹣t,
解得;t=,
②当PQ=CQ时,
即;t=2,
解得:t=,t=(不合题意舍去),
③当PQ=PC时,
即t=8﹣t,
解得:t=3﹣5≈1.7;
综上所述:当t=,t=,t=1.7时,△PQC为等腰三角形.
【解析】(1)如图1,过Q作QE⊥AC于E,连接PQ,由△ABC∽△AQE,得到比例式 , 求得PE=t , QE=t , 根据勾股定理得到PQ2=QE2+PE2 , 求出PQ=t,当Q与B重合时,PQ的值最大,于是得到当t=5时,PQ的最大值=3;
(2)由三角形的面积公式即可求得;
(3)存在,如图2,连接CQ,PQ,分三种情况①当CQ=CP时,②当PQ=CQ时,③当PQ=PC时,列方程求解即可.
【考点精析】本题主要考查了等腰三角形的性质和勾股定理的概念的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤。(用含x的代数式表示)
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离千米的地方有一城市A.
(1)问:A市是否会受到此台风的影响,为什么?
(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF,BF,DF.
(1)求证:△ABC≌△ABF;
(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.
(1)求抛物线的函数关系式;
(2)判断△ABM的形状,并说明理由
(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D,G两点,AD分别于EF,GF交于I,H两点.
(1)求∠FDE的度数;
(2)试判断四边形FACD的形状,并证明你的结论;
(3)当G为线段DC的中点时,
①求证:FD=FI;
②设AC=2m,BD=2n,求⊙O的面积与菱形ABCD的面积之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(﹣1, ),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为( )
A.(0,﹣2)
B.(1,﹣ )
C.(2,0)
D.( ,﹣1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com