精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD=30°,tan∠BAC=,CD=3,则AC= .

【答案】
【解析】解:过点D、B分别作DE⊥AC,BH⊥AC,垂足分别为E、H,设AC=x.

在Rt△CDE中,DC=3,∠DCE=30°,

∴DE=,CE=
则AE=x﹣
在Rt△AED中,由勾股定理得:AD2=AE2+DE2=
∵AB=BC,BH⊥AC,
∴AH=AC=x,
∵tan∠BAC=
∴BH=AH=x
在Rt△ABH中,由勾股定理得:AB2=BH2+AH2

∵AB=AD,

解得:x1=6,x2=
∴AC=6
过点D、B分别作DE⊥AC,BH⊥AC,垂足分别为E、H,设AC=x,先求得AE(用含x的式子表示)和DE的长,根据勾股定理可表示出AD2 , 然后根据等腰三角形三线合一的性质可知:AH=x,然后根据锐角三角函数的定义可求得HB(用含x的式子表示)的长,根据勾股定理可表示出AB2 , 然后根据AB=AD,列方程求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD均相切,现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动.⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动,已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).

(1)如图①,点P从A→B→C→D,全程共移动了 cm(用含a、b的代数式表示)
(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离
(3)如图②,已知a=20,b=10,是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是(  )

A.20°
B.35°
C.40°
D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校举行一次体育测试,从所有参加测试的中学生中随机的抽取10名学生的成绩,制作出如下统计表和条形图,请解答下列问题:

编号

成绩

等级

编号

成绩

等级

95

A

76

B

78

B

85

A

72

C

82

B

79

B

77

B

92

A

69

C


(1)孔明同学这次测试的成绩是87分,则他的成绩等级是 等;
(2)请将条形统计图补充完整;
(3)已知该校所有参加这次测试的学生中,有60名学生成绩是A等,请根据以上抽样结果,估计该校参加这次测试的学生总人数是多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.

(1)求证:△AEH≌△CGF
(2)求证:四边形EFGH是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.

(1)求m的值及抛物线E2所表示的二次函数的表达式;
(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.

(1)在运动过程中,求P,Q两点间距离的最大值;
(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;
(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t值;若不存在,请说明理由(≈2.24,结果保留一位小数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.
(1)求抛物线的解析式;
(2)在AC上方的抛物线上有一动点P.
①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;
②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.

查看答案和解析>>

同步练习册答案