精英家教网 > 初中数学 > 题目详情

【题目】水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是  斤。(用含x的代数式表示)
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

【答案】
(1)100+200x
(2)

解:根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,∵ 每天至少售出260斤,∴ x=1

答:张阿姨需将每斤的售价降低1元.


【解析】(1)将这种水果每斤的售价降低x元,则每天的销售量是100+x0.1×20=(100+200x)斤; (2)根据题意得:
(4-2-x)(100+200x)=300,解得:x=或x=1,∵ 每天至少售出260斤,∴ x=1 故答案为:张阿姨需将每斤的售价降低1元.
(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知l1⊥l2 , ⊙O与l1 , l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1 , l2重合,AB=4 cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)

(1)如图①,连接OA、AC,则∠OAC的度数为°;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1 , A1 , C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD均相切,现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动.⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动,已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).

(1)如图①,点P从A→B→C→D,全程共移动了 cm(用含a、b的代数式表示)
(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离
(3)如图②,已知a=20,b=10,是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.

(1)求证:∠A=∠AEB
(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)解不等式:
(2)计算:÷(a+2﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是(  )

A.20°
B.35°
C.40°
D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.

(1)在运动过程中,求P,Q两点间距离的最大值;
(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;
(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t值;若不存在,请说明理由(≈2.24,结果保留一位小数).

查看答案和解析>>

同步练习册答案