精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.
(1)求证:AB平分∠OAD;
(2)若点E是优弧 上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)

【答案】
(1)证明:连接OB,如图所示:

∵BC切⊙O于点B,

∴OB⊥BC,

∵AD⊥BC,

∴AD∥OB,

∴∠DAB=∠OBA,

∵OA=OB,

∴∠OAB=∠OBA,

∴∠DAB=∠OAB,

∴AB平分∠OAD;


(2)解:∵点E是优弧 上一点,且∠AEB=60°,

∴∠AOB=2∠AEB=120°,

∴扇形OAB的面积= =3π.


【解析】(1)连接OB,由切线的性质得出OB⊥BC,证出AD∥OB,由平行线的性质和等腰三角形的性质证出∠DAB=∠OAB,即可得出结论;(2)由圆周角定理得出∠AOB=120°,由扇形面积公式即可得出答案.
【考点精析】利用切线的性质定理和扇形面积计算公式对题目进行判断即可得到答案,需要熟知切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF,BF,DF.

(1)求证:△ABC≌△ABF;
(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.
根据上述信息,解答下列问题:
(1)本次抽取的学生人数是 ;扇形统计图中的圆心角α等于 ;补全统计直方图;
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.

(1)求抛物线的解析式;
(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?
(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.

(1)【问题引入】
若点O是AC的中点, = ,求 的值;
温馨提示:过点A作MN的平行线交BN的延长线于点G.
(2)若点O是AC上任意一点(不与A,C重合),求证: =1;
(3)【拓展应用】
如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若 = = ,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(﹣1, ),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为( )

A.(0,﹣2)
B.(1,﹣
C.(2,0)
D.( ,﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD(AB<AD).

(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;
①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;
②作∠DAE的平分线交CD于点F;
③连接EF;
(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AB=18,cosB= ,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E处,则线段AE的长为(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=x+b与反比例函数y= 的图象交于A、B两点,其中点A的坐标为(2,3).
(1)求一次函数与反比例函数的解析式;
(2)求点B的坐标;
(3)请根据图象直接写出不等式x+b> 的解集.

查看答案和解析>>

同步练习册答案