精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ACB=90°,AB=18,cosB= ,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E处,则线段AE的长为(
A.6
B.7
C.8
D.9

【答案】C
【解析】解:∵在△ABC中,∠ACB=90°,AB=9,cosB= , ∴BC=ABcosB=18× =12,AC= =6
∵把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,
∴△ABC≌△EDC,BC=DC=12,AC=EC=6 ,∠BCD=∠ACE,
∴∠B=∠CAE.
作CM⊥BD于M,作CN⊥AE于N,则∠BCM= ∠BCD,∠ACN= ∠ACE,
∴∠BCM=∠ACN.
∵在△ANC中,∠ANC=90°,AC=6 ,cos∠CAN=cosB=
∴AN=ACcos∠CAN=6 × =4
∴AE=2AN=8
故选C.

【考点精析】解答此题的关键在于理解解直角三角形的相关知识,掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法),以及对旋转的性质的理解,了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.

(1)求证:AB=AE;
(2)若∠A=100°,求∠EBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.
(1)求证:AB平分∠OAD;
(2)若点E是优弧 上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ABC=90°,AB=BC,点E、F在AC上,∠EBF=45°,若AE=1,CF=2,则AB的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某调查公司对本区域的共享单车数量及使用次数进行了调查发现,今年3月份第1周共有各类单车1000辆,第2周比第1周增加了10%,第3周比第2周增加了100辆,调查还发现某款单车深受群众喜爱,第1周该单车的每辆平均使用次数是这一周所有单车平均使用次数的2.5倍,第2、第3周该单车的每辆平均使用次数都比前一周增长一个相同的百分数m,第3周所有单车的每辆平均使用次数比第1周增加的百分数也是m,而且第3周该款单车(共100辆)的总使用次数占到所有单车总使用次数的四分之一.(注:总使用次数=每辆平均使用次数×车辆数)
(1)求第3周该区域内各类共享单车的数量;
(2)求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平行四边形ABCD和矩形ABEF中,AC与DF相交于点G.
(1)试说明DF=CE;
(2)若AC=BF=DF,求∠ACE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).

(1)当点A′落在边BC上时,求x的值;
(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;
(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①、②、③均是4×4的正方形网格,每个小正方形顶点叫做格点,点O和线段AB的端点在格点上,按要求完成下列作图.

(1)在图①、②中分别找到格点C、D,使以点A、B、C、D为顶点的四边形是平行四边形,且点O到这个四边形的两个端点的距离相等,画出两个这样的平行四边形.
(2)在图③中找到格点E、F,使以A、B、E、F为顶点的四边形的面积最大,且点O到这个四边形的两个端点的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=6,BC=8,以C为圆心适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于 MN的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AE+AF的值等于

查看答案和解析>>

同步练习册答案