【题目】方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.
方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.
请你帮助方成同学解决以下问题:
(1)分别求出线段BC,CD所在直线的函数表达式;
(2)当20<y<30时,求t的取值范围;
(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;
(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?
【答案】(!)y=40t-60;y=-20t+80.(2)2<t<或<t<3.(3)S甲=60t-60(1≤t≤),S乙=20t(0≤t≤4),(4)丙出发h与甲相遇.
【解析】
试题分析:(1)利用待定系数法求函数解析式,即可解答;
(2)先求出甲、乙的速度、所以OA的函数解析式为:y=20t(0≤t≤1),所以点A的纵坐标为20,根据当20<y<30时,得到20<40t-60<30,或20<-20t+80<30,解不等式组即可;
(3)得到S甲=60t-60(1≤t≤),S乙=20t(0≤t≤4),画出函数图象即可;
(4)确定丙距M地的路程S丙与时间t的函数表达式为:S丙=-40t+80(0≤t≤2),根据S丙=-40t+80与S甲=60t-60的图象交点的横坐标为,所以丙出发h与甲相遇.
试题解析:(1)直线BC的函数解析式为y=kt+b,
把(1.5,0),(,)代入得:
解得:,
∴直线BC的解析式为:y=40t-60;
设直线CD的函数解析式为y1=k1t+b1,
把(,),(4,0)代入得:
,
解得:,
∴直线CD的函数解析式为:y=-20t+80.
(2)设甲的速度为akm/h,乙的速度为bkm/h,根据题意得;
,
解得:,
∴甲的速度为60km/h,乙的速度为20km/h,
∴OA的函数解析式为:y=20t(0≤t≤1),所以点A的纵坐标为20,
当20<y<30时,
即20<40t-60<30,或20<-20t+80<30,
解得:2<t<或<t<3.
(3)根据题意得:S甲=60t-60(1≤t≤),S乙=20t(0≤t≤4),
所画图象如图2所示:
(4)当t=时,S乙=,丙距M地的路程S丙与时间t的函数表达式为:
S丙=-40t+80(0≤t≤2),
如图3,
S丙=-40t+80与S甲=60t-60的图象交点的横坐标为,所以丙出发h与甲相遇.
科目:初中数学 来源: 题型:
【题目】如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.
(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列六种说法正确的个数是( )
①无限小数都是无理数;
②正数、负数统称实数数;
③无理数的相反数还是无理数;
④无理数与无理数的和一定还是无理数;
⑤无理数与有理数的和一定是无理数;
⑥无理数与有理数的积一定仍是无理数.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.
(1)若α=0°,则DF=BF,请加以证明;
(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;
(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中:(1)一个数,如果不是正数,必定就是负数;(2)整数与分数统称为有理数;(3)如果两个数的绝对值相等,那么这两个数相等;(4)符号不同的两个数互为相反数.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com