精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCDBC边上的一点,EAD的中点,A点作BC的平行线交CE的延长线于点FAF=BD,连接BF

(1)求证BD=CD

(2)ABC满足什么条件时,四边形AFBD是矩形?并说明理由

【答案】(1)证明见解析(2)当△ABC满足:AB=AC,四边形AFBD是矩形.

【解析】分析:(1)由AFBC平行,利用两直线平行内错角相等得到一对角相等,再一对对顶角相等,且由EAD的中点,得到AE=DE,利用AAS得到AFEDCE全等,利用全等三角形的对应边相等即可得证;

(2)当ABC满足:AB=AC时,四边形AFBD是矩形,理由为:由AFBD平行且相等,得到四边形AFBD为平行四边形,再由AB=ACBD=CD,利用三线合一得到AD垂直于BC,即ADB为直角,即可得证.

详解:(1)∵AF∥BC,

∴∠AFE=∠DCE.

∵EAD的中点,

∴AE=DE .

△AEF△DEC中,

∴△AEF≌△DEC(AAS),

∴AF=CD.

∵AF=BD,

∴BD=CD.

(2)△ABC满足:AB=AC,四边形AFBD是矩形.

理由如下:

∵AF∥BD,AF=BD,

四边形AFBD是平行四边形,

∵AB=AC,BD=CD,

∴∠ADB=90°,

平行四边形AFBD是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过A(﹣ ,0)、B(3 ,0)、C(0,3)三点,线段BC与抛物线的对称轴相交于D.该抛物线的顶点为P,连接PA、AD、DP,线段AD与y轴相交于点E.

(1)求该抛物线的解析式;
(2)在平面直角坐标系中是否存在点Q,使以Q、C、D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,说明理由;
(3)将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴相交于点N,连接PM、DN,若PM=2DN,求点N的坐标(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8,BC=4,过对角线BD的中点O的直线分别交AB、CD于点E、F,连接DE,BF.

(1)求证:四边形BEDF是平行四边形;

(2)当四边形BEDF是菱形时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)(-2)+(-3)+5

(2)×5÷×5

(3)12-7×(-4)+8÷(-2)

(4)-14+(2-5)2-2

(5)2÷(-2)+0÷7-(-8)×(-2)

(6)(-1)5×(-5)÷[(-3)2+2×(-5)].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了更好地活跃校园文化生活,拟对本校自办的“辉煌”校报进行改版.先从全校学生中随机抽取一部分学生进行了一次问卷调查,题目为“你最喜爱校报的哪一个板块”(每人只限选一项).问卷收集整理后绘制了不完整的频数分布表和如图扇形统计图.

(1)填空:频数分布表中a= , b=
(2)“自然探索”板块在扇形统计图中所占的圆心角的度数为
(3)在参加此次问卷调查的学生中,最喜爱哪一个板块的人数最多?有多少人喜欢?
(4)若全校有1500人,估计喜欢“校园新闻”板块的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,灯的质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利润21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表所示:

等级(x级)

一级

二级

三级

生产量(y台/天)

78

76

74


(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出y与x之间的函数关系式:
(2)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正确的结论是(  )

A.①④
B.①③
C.②④
D.①②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国庆放假时,小明一家三口一起乘小轿车去乡下探望爷爷、奶奶和外公、外婆。早上从家里出发,向东走了6千米到超市买东西,然后又向东走了1.5千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里。

1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点ABC表示出来;

2)问超市A和外公家C相距多少千米?

3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家所经历路程小车的耗油量。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20171229日,国家发改委批复了昌景黄铁路项目可行性研究报告该项目位于赣皖两省,线路起自江西省南昌市南昌东站,经上饶市、景德镇市,安徽省黄山市,终至黄山北站.按照设计,行驶180千米,昌景黄高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少20分钟,求昌景黄高铁列车的平均行驶速度

查看答案和解析>>

同步练习册答案