精英家教网 > 初中数学 > 题目详情
4.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=240°,则∠P=30°.

分析 利用四边形内角和是360°可以求得∠DAB+∠ABC=120°.然后由角平分线的性质,邻补角的定义求得∠PAB+∠ABP=$\frac{1}{2}$∠DAB+∠ABC+$\frac{1}{2}$(180°-∠ABC)=90°+$\frac{1}{2}$(∠DAB+∠ABC)的度数,所以根据△ABP的内角和定理求得∠P的度数即可.

解答 解:如图,∵∠D+∠C=240°,∠DAB+∠ABC+∠C+∠D=360°,
∴∠DAB+∠ABC=120°.
又∵∠DAB的角平分线与∠ABC的外角平分线相交于点P,
∴∠PAB+∠ABP=$\frac{1}{2}$∠DAB+∠ABC+$\frac{1}{2}$(180°-∠ABC)=90°+$\frac{1}{2}$(∠DAB+∠ABC)=150°,
∴∠P=180°-(∠PAB+∠ABP)=30°.
故答案是:30.

点评 本题考查了三角形内角和定理、多边形的内角与外角.熟知“四边形的内角和是360°”是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.计算:
$\frac{{2{x^3}}}{y}÷\frac{4x}{{3{y^2}}}$=$\frac{3{x}^{2}y}{2}$;
$\frac{4a}{{{a^2}-1}}+\frac{1+a}{1-a}$=-$\frac{a-1}{a+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.生活中我们经常用的梯子,已知长度不变的梯子根地面所成的锐角为α,下面关于α的三角函数与梯子的倾斜程度之间,叙述正确的是(  )
A.sinα的值越大,梯子越陡B.cosα的值越大,梯子越陡
C.tanα的值越小,梯子越陡D.陡缓程度与α的函数值无关

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.一个等腰三角形的顶角是100°,则它的底角度数是(  )
A.30°B.60°C.40°D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.计算
(-2xy3z24=16x4y12z8
(-2)0+($\frac{1}{3}$)-2=10.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB是⊙O的直径,C,D是⊙O上的两点(不与A,B重合),若BC=2,tan∠BDC=$\frac{4}{5}$,则AB=$\frac{\sqrt{41}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.【探究】:某商场秋季计划购进一批进价为每条40元的围巾进行销售根据销售经验,应季销售时,若每条围巾的售价为60元,则可售出400条;若每条围巾的售价每提高1元,销售量相应减少10条.
(1)假设每条围巾的售价提高x元,那么销售每条围巾所获得的利润是20+x元,销售量是400-10x条(用含x的代数式表示).
(2)设应季销售利润为y元,请写y与x的函数关系式;并求出应季销售利润为8000元时每条围巾的售价.
【拓展】:根据销售经验,过季处理时,若每条围巾的售价定为30元亏本销售,可售出50条;若每条围巾的售价每降低1元,销售量相应增加5条,
(1)若剩余100条围巾需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每条围巾的售价应是20元.
(2)若过季需要处理的围巾共m条,且100≤m≤300,过季亏损金额最小是40m-2000元;(用含m的代数式表示)
【延伸】:若商场共购进了500条围巾且销售情况满足上述条件,如果应季销售利润在不低于8000元的条件下:
(1)没有售出的围巾共m条,则m的取值范围是:100≤m≤300;
(2)要使最后的总利润(销售利润=应季销售利润-过季亏损金额)最大,则应季销售的售价是60元.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是$(-\frac{b}{2a},\frac{{4ac-{b^2}}}{4a})$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,点A、B的坐标分别为(1,1)和(5,4),抛物线y=ax2+bx+c(a≠0)的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),当抛物线的顶点为A时,点C的横坐标为O,则点D的横坐标最大值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β)>tanα+tanβ.(填“>”“=”“<”)

查看答案和解析>>

同步练习册答案