精英家教网 > 初中数学 > 题目详情
10.下列方程中一定是关于x的一元二次方程是(  )
A.ax2+bx+c=0B.$\frac{1}{{x}^{2}}+\frac{1}{x}$-2=0C.3(x+1)2=2(x+1)D.x2-x(x+7)=0

分析 只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.

解答 解:A、a=0时是一元一次方程,故A不符合题意;
B、是分式方程,故B不符合题意;
C、是一元二次方程,故C符合题意;
D、是一元一次方程,故D不符合题意;
故选:C.

点评 此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图,在正方形ABCD中,E是BC的中点,折叠正方形使点A与E重合,折痕为MN,若梯形ADMN的面积是$\frac{3}{2}$,则正方形的边长是2;梯形ADMN与梯形BCMN的面积之比是$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下面说法中,不正确的是(  )
A.绝对值最小的实数是0B.立方根最小的实数是0
C.平方最小的实数是0D.算术平方根最小的实数是0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,弧AB的半径R为20m,AB的弦心距为OC为10m,求弓形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么sinB的值是(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知⊙O的半径为5cm,圆内两平行弦AB、CD的长分别为6cm、8cm,则弦AB、CD间的距离为(  )
A.1cmB.7cmC.7cm或1cmD.4cm或3cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,等边△ABC的边长是6,动点M、N分别同时从B、C出发,沿边BC、CA以1个单位/秒的速度运动(动点M、N分别到达C、A时停止运动),AM、BN交于点P,运动时间是t秒.
(1)①求证:AM=BN;②求∠BPM的度数;
(2)连接PC,当PC⊥AM时,求t的值;
(3)当M从点B运动至点C时,直接写出点P运动的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,为测量某栋楼房AB的高度,在C点测得A点的仰角为30°,朝楼房AB方向前进10米到达点D,再次测得A点的仰角为60°,则此楼房的高度为5$\sqrt{3}$米(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.观察下列式子
${\;}_{3=4×\frac{2}{3}+\frac{1}{3},4=5×\frac{3}{4}+\frac{1}{4}…}^{1=2×\frac{0}{1}+1,2=3×\frac{1}{2}+\frac{1}{2}}$
(1)根据上述规律,请猜想,若n为正整数,则n=(n+1)$\frac{n-1}{n}$+$\frac{1}{n}$
(2)证明你猜想的结论.

查看答案和解析>>

同步练习册答案