精英家教网 > 初中数学 > 题目详情

【题目】如图.ABC中,∠C=2B,DBC上一点,且ADAB,点EBD的中点,连结AE.

(1)求证:BD=2AC;

(2)若AE=6.5,AD=5,那么ABE的周长是多少?

【答案】(1)见解析;(2)25

【解析】

(1)在RtADB中,点EBD的中点;根据直角三角形的性质,可得BE=AE,故∠AEC=2B=C;AE=AC,代换可得结论;
(2)根据勾股定理可得AB的长,结合(1)的结论,可得答案.

1)证明:∵ADAB

∴∠BAD=90°,又点EBD的中点,

∴∠EAB=EBA

∴∠AEC=2B,又∠C=2B

∴∠AEC=C

AE=AC

BD=2AC

2)解:∵∠BAD=90°,点EBD的中点,

BD=2AE=13EA=EB=6.5

由勾股定理得,

∴△ABE的周长=AB+AE+BE=12+6.5+6.5=25

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,∠A0B=420,点P∠A0B内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2OAM,交OBN,P1P2=15,则△PMN的周长为________,∠MPN ________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.

(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?

(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据图形填空:

(1)若直线ED,BC被直线AB所截,则∠1__________是同位角.

(2)若直线ED,BC被直线AF所截,则∠3__________是内错角.

(3)1和∠3是直线AB,AF被直线__________所截构成的__________.

(4)2和∠4是直线____________________被直线BC所截构成的__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两座城市的中心火车站A,B两站相距360 km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54 km/h,当动车到达B站时,特快列车恰好到达距离A135 km处的C站.求动车和特快列车的平均速度各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(a,b),OA绕坐标原点O逆时针旋转90°OA',则点A'的坐标是_______ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示时间,y 表示张强离家的距离。根据图象提供的信息,以下四个说法错误的是(

A. 体育场离张强家2.5千米 B. 张强在体育场锻炼了15分钟

C. 体育场离早餐店4千米 D. 张强从早餐店回家的平均速度是3千米/小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,BD、CE分别是边AC、AB上的高,点MBC的中点,且MN⊥DE,垂足为点N

⑴求证:ME=MD;

⑵若BC=20cm,ED=12cm,求MN的长

⑶如果BD平分∠ABC,求证:AC=4EN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交ACAB边于EF若点DBC边的中点,点M为线段EF上一动点,则周长的最小值为  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

同步练习册答案