精英家教网 > 初中数学 > 题目详情

已知∠AOC=∠BOD=90°,如图所示

      (1)若∠BOC=20°,求∠AOD的度数

      (2)∠AOD和∠BOC是什么关系?请说明理由。

解:(1)∵∠AOB+∠BOC=90°    ∠BOC=20°

    ∴∠AOB=90°一20°

            =70°                            

∴∠AOD=∠AOB+∠BOD

        =70°+90°°

        =160°                      

(2)∠AOD与∠BOC互补                    

∠AOD+∠BOC=∠AOC+∠COD+∠BOC

      =∠AOC+∠BOD

      =90°+90°

      =180° 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知,如图,B在CD上,且AO=CO,BO=DO,∠AOC=∠BOD.
(1)找出图中的全等三角形,并说明理由;
(2)如果AO∥CD,∠BOD=30°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系内,已知点A和C的坐标分别为(8,0)和(5,4),过点C作CB⊥y轴于点B,点D从B出发,以每秒1个单位的速度延BO向终点O运动,点P从C出发,以每秒a(0<a≤1.25)个单位的速度延CB向终点B运动(当D点到达O点,P点也随之停止).过D作DE∥AC交OA于点E,过P作PQ∥AC交OA于点,连接PD,再过E作EF∥PD交PQ于F.设P、D两点的运动时间为t.
(1)分别求过A、C两点的直线和过B、C、A三点的抛物线的解析式;
(2)若a=1,求t为何值时,四边形DEFP为矩形?并求出此时直线PQ的解析式;
(3)是否存在这样的a,t的值,使四边形DEFP为正方形?若存在,求出此时a,t的值和正方形的面积;若不存在,说明理由;
(4)以A、O、C为顶点的△AOC中,M是AC上一动点,过M作MN∥OA交OC于N,试问,在x轴上是否存在点R,使得△MNR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•攀枝花)如图,在直角坐标系中,已知点A、B在x轴上,且B(t,0)(-1<t<0),等腰△ABC的顶点B在以AC为直径的半圆D上,点E是直线OC与半圆D除点C以外的另一个交点,连接AE与BC相交于点F.又已知抛物线y=a(x2-2x)向左平移2个单位长度后点O恰与点A重合、点M恰与原点O重合,并把平移后所得抛物线记为H.
(1)求证:BF=BO;
(2)如果抛物线H还经过点F,试用含t的式子表示a;
(3)若AE经过△AOC的内心I,试求出此时经过三点A、F、O的抛物线的解析式;
(4)在(3)的条件下,问在抛物线上是否存在点P,使该点关于直线AF的对称点在x轴上?若存在,请求出所有这样的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知AO是等腰Rt△ABC的角平分线,∠BAC=90°,AB=AC.
(1)在图1中,∠AOC的度数为
90°
90°
;与线段BO相等的线段为
CO和AO
CO和AO

(2)将图1中的△AOC绕点O顺时针旋转得到△A1OC1,如图2,连接AA1,BC1,试判断S△AOA1与S△BOC1的大小关系?并给出你的证明;
(3)将图1中的△ABO绕点B顺时针旋转得到△MBN,如图3,点P为MC的中点,连接PA、PN,求证:PA=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知OA⊥OD,BO平分∠AOC,∠AOB:∠COD=2:5.求∠AOB的度数.

查看答案和解析>>

同步练习册答案