【题目】王卉同学从家出发沿笔直的公路去晨练,他离开家的距离y(米)与时间x(分钟)的函数关系图象如图所示,下列结论正确的个数是( )
①整个行进过程花了30分钟;
②整个行进过程共走了1 000米;
③前10分钟的速度越来越快;
④在途中停下来休息了5分钟;
⑤返回时速度为100米/分钟.
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】
①由当y=0时,x=0或x=30即可得出①正确;②观察函数图象找出y的最大值,乘2即可得出②错误;③由前10分钟的函数图象为线段可知为匀速运动,即③错误;④由AB段平行于x轴,用15﹣10即可得出④正确;⑤根据速度=路程÷时间即可算出返回时速度为100米/分,即⑤正确.
综上即可得出结论.
①∵当y=0时,x=0或x=30,∴整个行进过程花了30分钟,①正确;
②观察函数图象可知,y的最大值为1000.
∵1000×2=2000(米),∴整个行进过程共走了2000米,②错误;
③∵当0≤x≤10时,函数图象为线段,∴前10分钟为匀速运动,③错误;
④∵15﹣10=5(分钟),∴在途中停下来休息了5分钟,④正确;
⑤∵1000÷(30﹣20)=100(米/分),∴返回时速度为100米/分,⑤正确.
综上所述:正确的结论有①④⑤.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.
(1)试判断直线EF与⊙O的位置关系,并说明理由;
(2)若OA=2,∠A=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点和A(﹣1,0)和点B(4,0),与y轴交于点C(0,2).
(1)求抛物线解析式;
(2)点P是抛物线BC段上一点,PD⊥BC,PE∥y轴,分别交BC于点D、E.当DE= 时,求点P的坐标;
(3)M是平面内一点,将符合(2)条件下的△PDE绕点M沿逆时针方向旋转90°后,点P,D,E的对应点分别是P′、D′、E′.设P′E′的中点为N,当抛物线同时经过D′与N时,求出D′的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,A(-1,5)、B(-1,0),C(-4,3).
(1)△ABC的面积是 .
(2)在下图中画出△ABC向下平移2个单位,向右平移5个单位后的△A1B1C1.
(3)写出点A1、B1、C1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a,b,c满足|a-|++(c-)2=0.
(1)求a,b,c的值;
(2)试问以a,b,c为边能否构成三角形?若能,求出其周长;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个函数的图象如图所示,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③当x<0时,函数y随x的增大而增大;④存在0<a<1,当x=a时,函数值为0.其中正确的结论是( )
A. ①② B. ②③ C. ③④ D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】画出直线y=x-1的图象,利用图象求:
(1)当x≥2时,y的取值范围;
(2)当y<0时,x的取值范围;
(3)当-1≤y≤2时,对应x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列叙述:①如果a是非负数,则;②“减去10不大于2”表示为;③“的倒数超过10”表示为;④“a,b两数的平方和为正数”表示为;其中正确的个数是( )
A. 2 个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.
(1)求证:BE是⊙O的切线;
(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BGBA=48,FG= ,DF=2BF,求AH的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com